
Jianke Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2337396/publications.pdf Version: 2024-02-01

LIANKE ZHANC

#	Article	IF	CITATIONS
1	Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature, 1998, 392, 296-300.	27.8	690
2	Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature, 2011, 471, 373-376.	27.8	380
3	Autophagosomal Membrane Serves as Platform for Intracellular Death-inducing Signaling Complex (iDISC)-mediated Caspase-8 Activation and Apoptosis. Journal of Biological Chemistry, 2012, 287, 12455-12468.	3.4	291
4	Critical role for Daxx in regulating Mdm2. Nature Cell Biology, 2006, 8, 855-862.	10.3	236
5	FADD Is Required for DR4- and DR5-mediated Apoptosis. Journal of Biological Chemistry, 2000, 275, 25065-25068.	3.4	206
6	Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nature Communications, 2015, 6, 7515.	12.8	205
7	Essential Roles of Receptor-Interacting Protein and TRAF2 in Oxidative Stress-Induced Cell Death. Molecular and Cellular Biology, 2004, 24, 5914-5922.	2.3	139
8	PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3930-3935.	7.1	121
9	T cell-specific FADD-deficient mice: FADD is required for early T cell development. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6307-6312.	7.1	105
10	Epithelial Cell Death Is an Important Contributor to Oxidant-mediated Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1043-1054.	5.6	93
11	RIP1-Dependent and Independent Effects of Necrostatin-1 in Necrosis and T Cell Activation. PLoS ONE, 2011, 6, e23209.	2.5	86
12	CYLD Proteolysis Protects Macrophages from TNF-Mediated Auto-necroptosis Induced by LPS and Licensed by Type I IFN. Cell Reports, 2016, 15, 2449-2461.	6.4	83
13	RIPK1 can mediate apoptosis in addition to necroptosis during embryonic development. Cell Death and Disease, 2019, 10, 245.	6.3	82
14	Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human AML. Journal of Experimental Medicine, 2014, 211, 1093-1108.	8.5	80
15	FADD-deficient T Cells Exhibit a Disaccord in Regulation of the Cell Cycle Machinery. Journal of Biological Chemistry, 2001, 276, 29815-29818.	3.4	79
16	The Fas-Associated Death Domain Protein Is Required in Apoptosis and TLR-Induced Proliferative Responses in B Cells. Journal of Immunology, 2006, 176, 6852-6861.	0.8	79
17	MLKL and FADD Are Critical for Suppressing Progressive Lymphoproliferative Disease and Activating the NLRP3 Inflammasome. Cell Reports, 2016, 16, 3247-3259.	6.4	74
18	Regulation of the Transcription of a Cluster of Bacillus subtilis Spore Coat Genes. Journal of Molecular Biology, 1994, 240, 405-415.	4.2	71

JIANKE ZHANG

#	Article	IF	CITATIONS
19	Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress response. Nature Communications, 2019, 10, 3759.	12.8	70
20	Conditional Fas-Associated Death Domain Protein (FADD):GFP Knockout Mice Reveal FADD Is Dispensable in Thymic Development but Essential in Peripheral T Cell Homeostasis. Journal of Immunology, 2005, 175, 3033-3044.	0.8	66
21	The DUSP26 phosphatase activator adenylate kinase 2 regulates FADD phosphorylation and cell growth. Nature Communications, 2014, 5, 3351.	12.8	52
22	Phosphorylation of FADD by the kinase CK1α promotes KRAS ^{G12D} -induced lung cancer. Science Signaling, 2015, 8, ra9.	3.6	40
23	The Death Domain of FADD Is Essential for Embryogenesis, Lymphocyte Development, and Proliferation. Journal of Biological Chemistry, 2009, 284, 9917-9926.	3.4	31
24	RIP1-mediated regulation of lymphocyte survival and death responses. Immunologic Research, 2011, 51, 227-236.	2.9	31
25	Inhibition of Fas-Associated Death Domain-Containing Protein (FADD) Protects against Myocardial Ischemia/Reperfusion Injury in a Heart Failure Mouse Model. PLoS ONE, 2013, 8, e73537.	2.5	27
26	TRADD regulates perinatal development and adulthood survival in mice lacking RIPK1 and RIPK3. Nature Communications, 2019, 10, 705.	12.8	25
27	A Bacillus subtilis bglA gene encoding phospho-β-glucosidase is inducible and closely linked to a NADH dehydrogenase-encoding gene. Gene, 1994, 140, 85-90.	2.2	21
28	Structural Requirements for Signal-induced Target Binding of FADD Determined by Functional Reconstitution of FADD Deficiency. Journal of Biological Chemistry, 2005, 280, 31360-31367.	3.4	21
29	A Role for cFLIP in B Cell Proliferation and Stress MAPK Regulation. Journal of Immunology, 2009, 182, 207-215.	0.8	21
30	A novel function of RIP1 in postnatal development and immune homeostasis by protecting against RIP3-dependent necroptosis and FADD-mediated apoptosis. Frontiers in Cell and Developmental Biology, 2015, 3, 12.	3.7	21
31	Kinase-independent function of RIP1, critical for mature T-cell survival and proliferation. Cell Death and Disease, 2016, 7, e2379-e2379.	6.3	17
32	FADD Deficiency Impairs Early Hematopoiesis in the Bone Marrow. Journal of Immunology, 2011, 186, 203-213.	0.8	15
33	Anti-MS4a4B treatment abrogates MS4a4B-mediated protection in T cells and ameliorates experimental autoimmune encephalomyelitis. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 1106-1119.	4.9	14
34	Mammalian nitrilase 1 homologue Nit1 is a negative regulator in T cells. International Immunology, 2009, 21, 691-703.	4.0	8
35	RIPK3 Takes Another Deadly Turn. Science, 2014, 343, 1322-1323.	12.6	7
36	Daxx plays a novel role in T cell survival but is dispensable in Fas-induced apoptosis. PLoS ONE, 2017, 12, e0174011.	2.5	6

#	Article	IF	CITATIONS
37	Expression of Stage-Specific Genes during Zygotic Gene Activation in Preimplantation Mouse Embryos. Zoological Science, 2003, 20, 1389-1393.	0.7	3
38	A critical role of FADD in hematopoietic stem and progenitor cells. FASEB Journal, 2010, 24, 703.15.	0.5	0
39	FADD/RIP1/RIP3 coregulation of apoptotic, necrotic and survival pathways in embryogenesis and lymphoid homeostasis. FASEB Journal, 2012, 26, 798.29.	0.5	Ο