
Sean S Davies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2336918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective measurement of NAPE-PLD activity via a PLA1/2-resistant fluorogenic N-acyl-phosphatidylethanolamine analog. Journal of Lipid Research, 2022, 63, 100156.	2.0	4
2	Elucidation of physico-chemical principles of high-density lipoprotein–small RNA binding interactions. Journal of Biological Chemistry, 2022, 298, 101952.	1.6	4
3	Isolevuglandins disrupt PU.1-mediated C1q expression and promote autoimmunity and hypertension in systemic lupus erythematosus. JCI Insight, 2022, 7, .	2.3	15
4	DC ENaC-Dependent Inflammasome Activation Contributes to Salt-Sensitive Hypertension. Circulation Research, 2022, 131, 328-344.	2.0	31
5	Sodium activates human monocytes via the NADPH oxidase and isolevuglandin formation. Cardiovascular Research, 2021, 117, 1358-1371.	1.8	41
6	Scavenging Reactive Lipids to Prevent Oxidative Injury. Annual Review of Pharmacology and Toxicology, 2021, 61, 291-308.	4.2	13
7	Direct Detection of Isolevuglandins in Tissues using a D11 scFv-Alkaline Phosphatase Fusion Protein and Immunofluorescence. Journal of Visualized Experiments, 2021, , .	0.2	1
8	Kidney injury-mediated disruption of intestinal lymphatics involves dicarbonyl-modified lipoproteins. Kidney International, 2021, 100, 585-596.	2.6	11
9	Myeloperoxidase-induced modification of HDL by isolevuglandins inhibits paraoxonase-1 activity. Journal of Biological Chemistry, 2021, 297, 101019.	1.6	13
10	Isolevuglandins as mediators of disease and the development of dicarbonyl scavengers as pharmaceutical interventions. , 2020, 205, 107418.		27
11	Mitochondrial Isolevuglandins Contribute to Vascular Oxidative Stress and Mitochondria-Targeted Scavenger of Isolevuglandins Reduces Mitochondrial Dysfunction and Hypertension. Hypertension, 2020, 76, 1980-1991.	1.3	17
12	Engineering the gut microbiota to treat chronic diseases. Applied Microbiology and Biotechnology, 2020, 104, 7657-7671.	1.7	19
13	Progressively decreasing plasma high-density lipoprotein cholesterol levels preceding diagnosis of smoldering myeloma. Journal of Clinical Lipidology, 2020, 14, 293-296.	0.6	2
14	Scavenging of reactive dicarbonyls with 2-hydroxybenzylamine reduces atherosclerosis in hypercholesterolemic LdIrâ^'/â^' mice. Nature Communications, 2020, 11, 4084.	5.8	39
15	Highly Reactive Isolevuglandins Promote Atrial Fibrillation Caused by Hypertension. JACC Basic To Translational Science, 2020, 5, 602-615.	1.9	17
16	A Simple and Rapid Method to Measure Food Intake in Fish Using Brine Shrimp. Zebrafish, 2020, 17, 229-232.	0.5	0
17	Pro-inflammatory HDL in women with obesity and nonalcoholic steatohepatitis. Obesity Research and Clinical Practice, 2020, 14, 333-338.	0.8	3
18	Reactive Dicarbonyl Scavenging Effectively Reduces MPO-Mediated Oxidation of HDL and Restores PON1 Activity. Nutrients, 2020, 12, 1937.	1.7	12

#	Article	IF	CITATIONS
19	Symmetrically substituted dichlorophenes inhibit N-acyl-phosphatidylethanolamine phospholipase D. Journal of Biological Chemistry, 2020, 295, 7289-7300.	1.6	14
20	Targeting of reactive isolevuglandins in mitochondrial dysfunction and inflammation. Redox Biology, 2019, 26, 101300.	3.9	13
21	Administration of N-Acyl-Phosphatidylethanolamine Expressing Bacteria to Low Density Lipoprotein Receptorâ^'/â^' Mice Improves Indices of Cardiometabolic Disease. Scientific Reports, 2019, 9, 420.	1.6	28
22	Two-week administration of engineered Escherichia coli establishes persistent resistance to diet-induced obesity even without antibiotic pre-treatment. Applied Microbiology and Biotechnology, 2019, 103, 6711-6723.	1.7	10
23	Arachidonic Acid Kills Staphylococcus aureus through a Lipid Peroxidation Mechanism. MBio, 2019, 10,	1.8	44
24	Modified sites and functional consequences of 4-oxo-2-nonenal adducts in HDL that are elevated in familial hypercholesterolemia. Journal of Biological Chemistry, 2019, 294, 19022-19033.	1.6	16
25	Simplified LC/MS assay for the measurement of isolevuglandin protein adducts in plasma and tissue samples. Analytical Biochemistry, 2019, 566, 89-101.	1.1	13
26	Alcohol + PLD = Phosphatidylethanol, a Longâ€Term Alcohol Biomarker. FASEB Journal, 2019, 33, 635.16.	0.2	0
27	Modification by isolevuglandins, highly reactive γ-ketoaldehydes, deleteriously alters high-density lipoprotein structure and function. Journal of Biological Chemistry, 2018, 293, 9176-9187.	1.6	44
28	Dietary Fatty Acids Control the Species of <i>N</i> -Acyl-Phosphatidylethanolamines Synthesized by Therapeutically Modified Bacteria in the Intestinal Tract. ACS Infectious Diseases, 2018, 4, 3-13.	1.8	15
29	Isolevuglandins and cardiovascular disease. Prostaglandins and Other Lipid Mediators, 2018, 139, 29-35.	1.0	12
30	A novel mechanism of NO synthase uncoupling involving isolevuglandin adduction. FASEB Journal, 2018, 32, 715.4.	0.2	0
31	Dendritic cells and isolevuglandins in immunity, inflammation, and hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H368-H374.	1.5	40
32	Reactive Carbonyl Species Scavengers—Novel Therapeutic Approaches for Chronic Diseases. Current Pharmacology Reports, 2017, 3, 51-67.	1.5	36
33	Reactive gamma-ketoaldehydes as novel activators of hepatic stellate cells in vitro. Free Radical Biology and Medicine, 2017, 102, 162-173.	1.3	11
34	Leptogenic effects of NAPE require activity of NAPE-hydrolyzing phospholipase D. Journal of Lipid Research, 2017, 58, 1624-1635.	2.0	15
35	Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Medicine, 2016, 8, 46.	3.6	402
36	Net cholesterol efflux capacity of HDL enriched serum and coronary atherosclerosis in rheumatoid arthritis. IJC Metabolic & Endocrine, 2016, 13, 6-11.	0.5	15

#	Article	IF	CITATIONS
37	Accumulation of isolevuglandin-modified protein in normal and fibrotic lung. Scientific Reports, 2016, 6, 24919.	1.6	21
38	Effect of Drug Therapy on Net Cholesterol Efflux Capacity of Highâ€Density Lipoprotein–Enriched Serum in Rheumatoid Arthritis. Arthritis and Rheumatology, 2016, 68, 2099-2105.	2.9	35
39	Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols. MBio, 2016, 7, e01725-15.	1.8	235
40	Isolevuglandin-Type Lipid Aldehydes Induce the Inflammatory Response of Macrophages by Modifying Phosphatidylethanolamines and Activating the Receptor for Advanced Glycation Endproducts. Antioxidants and Redox Signaling, 2015, 22, 1633-1645.	2.5	25
41	Reactive Î ³ -ketoaldehydes promote protein misfolding and preamyloid oligomer formation in rapidly-activated atrial cells. Journal of Molecular and Cellular Cardiology, 2015, 79, 295-302.	0.9	27
42	Clinical Relevance of Biomarkers of Oxidative Stress. Antioxidants and Redox Signaling, 2015, 23, 1144-1170.	2.5	604
43	Immune activation caused by vascular oxidation promotes fibrosis and hypertension. Journal of Clinical Investigation, 2015, 126, 50-67.	3.9	170
44	Lipid peroxidation generates biologically active phospholipids including oxidatively N-modified phospholipids. Chemistry and Physics of Lipids, 2014, 181, 1-33.	1.5	67
45	Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. Journal of Clinical Investigation, 2014, 124, 3391-3406.	3.9	227
46	DC isoketal-modified proteins activate T cells and promote hypertension. Journal of Clinical Investigation, 2014, 124, 4642-4656.	3.9	400
47	Bioactive aldehyde-modified phosphatidylethanolamines. Biochimie, 2013, 95, 74-78.	1.3	18
48	lsolevuglandin-modified phosphatidylethanolamine is metabolized by NAPE-hydrolyzing phospholipase D. Journal of Lipid Research, 2013, 54, 3151-3157.	2.0	13
49	Dietary Selenium Deficiency Exacerbates DSS-Induced Epithelial Injury and AOM/DSS-Induced Tumorigenesis. PLoS ONE, 2013, 8, e67845.	1.1	84
50	Oxidative Insult After Ischemia/Reperfusion in Older Adults. , 2013, , 263-284.		0
51	Superoxide and Isoketal formation in Dendritic Cells from Hypertensive mice activate T cells and promote Hypertension. FASEB Journal, 2013, 27, 708.7.	0.2	0
52	Oxidative stress in older adults: effects of physical fitness. Age, 2012, 34, 969-982.	3.0	56
53	Identification of novel bioactive aldehyde-modified phosphatidylethanolamines formed by lipid peroxidation. Free Radical Biology and Medicine, 2012, 53, 1226-1238.	1.3	43
54	Neuron-Specific Deletion of Peroxisome Proliferator-Activated Receptor Delta (PPARδ) in Mice Leads to Increased Susceptibility to Diet-Induced Obesity. PLoS ONE, 2012, 7, e42981.	1.1	33

#	Article	IF	CITATIONS
55	Effect of Hypertension on Dendritic Cells and a potential role of Isoketals. FASEB Journal, 2012, 26, 872.16.	0.2	0
56	Treatment with a Î ³ -Ketoaldehyde Scavenger Prevents Working Memory Deficits in hApoE4 Mice. Journal of Alzheimer's Disease, 2011, 27, 49-59.	1.2	40
57	F2-isoprostanes as an indicator and risk factor for coronary heart disease. Free Radical Biology and Medicine, 2011, 50, 559-566.	1.3	134
58	Isoprostane Generation and Function. Chemical Reviews, 2011, 111, 5973-5996.	23.0	257
59	Evidence of Oxidative Stress in Relation to Feeding Type During Early Life in Premature Infants. Pediatric Research, 2011, 69, 160-164.	1.1	61
60	Phosphatidylethanolamines Modified by γ-Ketoaldehyde (γKA) Induce Endoplasmic Reticulum Stress and Endothelial Activation. Journal of Biological Chemistry, 2011, 286, 18170-18180.	1.6	46
61	Reactive Î ³ -ketoaldehydes formed via the isoprostane pathway disrupt mitochondrial respiration and calcium homeostasis. Free Radical Biology and Medicine, 2010, 49, 567-579.	1.3	39
62	Determination of the Pharmacokinetics and Oral Bioavailability of Salicylamine, a Potent Î ³ -Ketoaldehyde Scavenger, by LC/MS/MS. Pharmaceutics, 2010, 2, 18-29.	2.0	28
63	Isoketals form cytotoxic phosphatidylethanolamine adducts in cells. Journal of Lipid Research, 2010, 51, 999-1009.	2.0	49
64	A liquid chromatography–tandem mass spectrometry method for measurement of N-modified phosphatidylethanolamines. Analytical Biochemistry, 2010, 405, 236-245.	1.1	33
65	Tart Cherry Juice Decreases Oxidative Stress in Healthy Older Men and Women , ,. Journal of Nutrition, 2009, 139, 1896-1900.	1.3	114
66	Amitriptyline Activates Cardiac Ryanodine Channels and Causes Spontaneous Sarcoplasmic Reticulum Calcium Release. Molecular Pharmacology, 2009, 75, 183-195.	1.0	24
67	Ischemia/reperfusion unveils impaired capacity of older adults to restrain oxidative insult. Free Radical Biology and Medicine, 2009, 47, 1014-1018.	1.3	18
68	Lipidomic approaches to measuring isoprostanes and other markers of oxidative stress. European Journal of Lipid Science and Technology, 2009, 111, 64-74.	1.0	4
69	Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nature Medicine, 2009, 15, 380-383.	15.2	539
70	Low concentrations of reactive Î ³ -ketoaldehydes prime thromboxane-dependent human platelet aggregation via p38-MAPK activation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 307-313.	1.2	20
71	Elimination of GD3 synthase improves memory and reduces amyloid-Î ² plaque load in transgenic mice. Neurobiology of Aging, 2009, 30, 1777-1791.	1.5	118
72	Modulation of Protein Function by Isoketals and Levuglandins. Sub-Cellular Biochemistry, 2008, 49, 49-70.	1.0	13

#	Article	IF	CITATIONS
73	Aging, Resting Metabolic Rate, and Oxidative Damage: Results From the Louisiana Healthy Aging Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 752-759.	1.7	79
74	Potential Role of Isoketals Formed Via the Isoprostane Pathway of Lipid Peroxidation in Ischemic Arrhythmias. Journal of Cardiovascular Pharmacology, 2007, 50, 480-486.	0.8	14
75	Measurement of chronic oxidative and inflammatory stress by quantification of isoketal/levuglandin γ-ketoaldehyde protein adducts using liquid chromatography tandem mass spectrometry. Nature Protocols, 2007, 2, 2079-2091.	5.5	42
76	Pyridoxamine Analogues Scavenge Lipid-Derived γ-Ketoaldehydes and Protect against H2O2-Mediated Cytotoxicityâ€. Biochemistry, 2006, 45, 15756-15767.	1.2	62
77	Quantification of dinor,dihydro metabolites of F2-isoprostanes in urine by liquid chromatography/tandem mass spectrometry. Analytical Biochemistry, 2006, 348, 185-191.	1.1	49
78	Oxidant stress modulates murine allergic airway responses. Free Radical Biology and Medicine, 2006, 40, 1210-1219.	1.3	64
79	Oxidative Mediated Lipid Peroxidation Recapitulates Proarrhythmic Effects on Cardiac Sodium Channels. Circulation Research, 2005, 97, 1262-1269.	2.0	117
80	A Simplified Synthesis of the Diastereomers of Levuglandin E2. Synthetic Communications, 2005, 35, 397-408.	1.1	31
81	The Biochemistry of the Isoprostane, Neuroprostane, and Isofuran Pathways of Lipid Peroxidation. Brain Pathology, 2005, 15, 143-148.	2.1	95
82	Modification of Proteins by Isoketal-containing Oxidized Phospholipids. Journal of Biological Chemistry, 2004, 279, 13447-13451.	1.6	78
83	Localization of isoketal adducts in vivo using a single-chain antibody. Free Radical Biology and Medicine, 2004, 36, 1163-1174.	1.3	53
84	Covalent binding of isoketals to ethanolamine phospholipids. Free Radical Biology and Medicine, 2004, 37, 1604-1611.	1.3	45
85	Isoketals: highly reactive γ-ketoaldehydes formed from the H2-isoprostane pathway. Chemistry and Physics of Lipids, 2004, 128, 85-99.	1.5	66
86	Pyridoxamine:  An Extremely Potent Scavenger of 1,4-Dicarbonyls. Chemical Research in Toxicology, 2004, 17, 410-415.	1.7	83
87	Hydrolysis of Bimatoprost (Lumigan) to its Free Acid by Ocular TissueIn Vitro. Journal of Ocular Pharmacology and Therapeutics, 2003, 19, 45-54.	0.6	52
88	Levuglandinyl Adducts of Proteins Are Formed via a Prostaglandin H2 Synthase-dependent Pathway after Platelet Activation. Journal of Biological Chemistry, 2003, 278, 16926-16928.	1.6	29
89	Measurement of Isoketal Protein Adducts by Liquid Chromatography-Electrospray Ionization/Tandem Mass Spectrometry. , 2003, , 127-136.		1
90	Effects of reactive γâ€ketoaldehydes formed by the isoprostane pathway (isoketals) and cyclooxygenase pathway (levuglandins) on proteasome function. FASEB Journal, 2002, 16, 715-717.	0.2	101

#	Article	IF	CITATIONS
91	Formation of Highly Reactive Î ³ -Ketoaldehydes (Neuroketals) as Products of the Neuroprostane Pathway. Journal of Biological Chemistry, 2001, 276, 30964-30970.	1.6	90
92	Oxidized Alkyl Phospholipids Are Specific, High Affinity Peroxisome Proliferator-activated Receptor γ Ligands and Agonists. Journal of Biological Chemistry, 2001, 276, 16015-16023.	1.6	243
93	Analysis of oxidized glycerophosphocholine lipids using electrospray ionization mass spectrometry and microderivatization techniques. , 2000, 35, 224-236.		46
94	Inflammatory Platelet-activating Factor-like Phospholipids in Oxidized Low Density Lipoproteins Are Fragmented Alkyl Phosphatidylcholines. Journal of Biological Chemistry, 1999, 274, 28395-28404.	1.6	169
95	Antibodies as targeting moieties: affinity measurements, conjugation chemistry and applications in immunoliposomes. Journal of Controlled Release, 1994, 28, 155-166.	4.8	12