
Marie Arsalidou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2336693/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ls 2+2=4? Meta-analyses of brain areas needed for numbers and calculations. NeuroImage, 2011, 54, 2382-2393.	2.1	650
2	Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies. Developmental Cognitive Neuroscience, 2018, 30, 239-250.	1.9	172
3	Lateralization of affective processing in the insula. NeuroImage, 2013, 78, 159-175.	2.1	167
4	The centre of the brain: Topographical model of motor, cognitive, affective, and somatosensory functions of the basal ganglia. Human Brain Mapping, 2013, 34, 3031-3054.	1.9	166
5	Converging Evidence for the Advantage of Dynamic Facial Expressions. Brain Topography, 2011, 24, 149-163.	0.8	127
6	Dissociations of cognitive inhibition, response inhibition, and emotional interference: Voxelwise ALE metaâ€analyses of fMRI studies. Human Brain Mapping, 2018, 39, 4065-4082.	1.9	127
7	Neural correlates of personally familiar faces: Parents, partner and own faces. Human Brain Mapping, 2009, 30, 2008-2020.	1.9	98
8	Meta-analyses of the n-back working memory task: fMRI evidence of age-related changes in prefrontal cortex involvement across the adult lifespan. NeuroImage, 2019, 196, 16-31.	2.1	93
9	<i>N</i> â€back Working Memory Task: Metaâ€analysis of Normative fMRI Studies With Children. Child Development, 2018, 89, 2010-2022.	1.7	63
10	A balancing act of the brain: activations and deactivations driven by cognitive load. Brain and Behavior, 2013, 3, 273-285.	1.0	62
11	Cerebral White Matter Myelination and Relations to Age, Gender, and Cognition: A Selective Review. Frontiers in Human Neuroscience, 2021, 15, 662031.	1.0	59
12	Misleading cues improve developmental assessment of working memory capacity: The color matching tasks. Cognitive Development, 2010, 25, 262-277.	0.7	52
13	Brain Responses to Dynamic Facial Expressions: A Normative Meta-Analysis. Frontiers in Human Neuroscience, 2018, 12, 227.	1.0	42
14	Brain responses to social norms: Metaâ€analyses of f <scp>MRI</scp> studies. Human Brain Mapping, 2018, 39, 955-970.	1.9	40
15	Brain responses differ to faces of mothers and fathers. Brain and Cognition, 2010, 74, 47-51.	0.8	39
16	Constructivist developmental theory is needed in developmental neuroscience. Npj Science of Learning, 2016, 1, 16016.	1.5	26
17	Basal ganglia lateralization in different types of reward. Brain Imaging and Behavior, 2020, 14, 2618-2646.	1.1	26
18	Letter and Colour Matching Tasks: Parametric Measures of Developmental Working Memory Capacity. Child Development Research, 2014, 2014, 1-9.	1.8	18

Marie Arsalidou

#	Article	IF	CITATIONS
19	Negative priming: a meta-analysis of fMRI studies. Experimental Brain Research, 2017, 235, 3367-3374.	0.7	14
20	Why parametric measures are critical for understanding typical and atypical cognitive development. Brain Imaging and Behavior, 2017, 11, 1214-1224.	1.1	14
21	Multiple levels of mental attentional demand modulate peak saccade velocity and blink rate. Heliyon, 2022, 8, e08826.	1.4	12
22	Cognitive Brain Signatures of Youth With Early Onset and Relatives With Schizophrenia: Evidence From fMRI Meta-analyses. Schizophrenia Bulletin, 2020, 46, 857-868.	2.3	11
23	Spatial migration of human reward processing with functional development: Evidence from quantitative metaâ€analyses. Human Brain Mapping, 2020, 41, 3993-4009.	1.9	10
24	Neuropsychology still needs to model organismic processes "from within― Behavioral and Brain Sciences, 2015, 38, e83.	0.4	9
25	A machine learning investigation of factors that contribute to predicting cognitive performance: Difficulty level, reaction time and eye-movements. Decision Support Systems, 2022, 155, 113713.	3.5	9
26	Working memory capacity: the need for process task-analysis. Frontiers in Psychology, 2013, 4, 257.	1.1	8
27	School engagement of children in early grades: Psychometric, and gender comparisons. PLoS ONE, 2019, 14, e0225542.	1.1	8
28	"l Can Read These Colors.―Orthographic Manipulations and the Development of the Color-Word Stroop. Frontiers in Psychology, 2012, 3, 594.	1.1	4
29	Commentary: Selective Development of Anticorrelated Networks in the Intrinsic Functional Organization of the Human Brain. Frontiers in Human Neuroscience, 2017, 11, 13.	1.0	4
30	Predicting cognitive performance using eye-movements, reaction time and difficulty level Journal of Vision, 2021, 21, 2551.	0.1	1
31	Effects of task complexity and working memory load on eye-tracking indices of cognitive effort in adults and children. Journal of Vision, 2020, 20, 1069.	0.1	1
32	Effects of age, gender, and hemisphere on cerebrovascular hemodynamics in children and young adults: Developmental scores and machine learning classifiers. PLoS ONE, 2022, 17, e0263106.	1.1	1
33	Converging evidence for domain-general developmental trends of mental attentional capacity: Validity and reliability of full and abbreviated measures. Journal of Experimental Child Psychology, 2022, 222, 105462.	0.7	1
34	Quantitative Meta-analyses of Cognitive Abilities in Children With Pediatric-onset Multiple Sclerosis. Neuropsychology Review, 0, , .	2.5	1
35	Basic cognitive architectures and neuroimmune serum biomarkers in schizophrenia. Procedia Computer Science, 2018, 145, 596-603.	1.2	0
36	Functional Neuroimaging of Self-ratings Associated with Cognitive Effort. Advances in Intelligent Systems and Computing, 2021, , 413-420.	0.5	0

#	Article	IF	CITATIONS
37	Theoretical and Empirical Criteria for Selecting Cognitive Over-Performers: Data from a Primary School in Moscow. Advances in Intelligent Systems and Computing, 2021, , 29-35.	0.5	ο
38	Attentional strategies during mental arithmetic. Journal of Vision, 2021, 21, 2539.	0.1	0
39	Machine learning, eye movements and mathematical problem solving. Journal of Vision, 2021, 21, 2397.	0.1	0

40 ĐœĐμÑ,Đ¾ĐÑ< Đ²Ñ<ÑĐ²Đ»ĐμĐ½Đ,Ñ•Đ⁰Đ¾Đ³Đ½Đ,Ñ,Đ,Đ²Đ½D¾ Đ¾ĐаÑ€ĐμĐ½Đ½N<N... Đ`ĐμÑ,ĐμĐ¹. Psychology, ¢ournal of t