Emilio Saccani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2336639/publications.pdf

Version: 2024-02-01

414414 394421 1,588 32 19 32 citations h-index g-index papers 32 32 32 1132 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Geochemical variability among stratiform chromitites and ultramafic rocks from Western Makran, South Iran. Lithos, 2022, 412-413, 106591.	1.4	3
2	Geochemistry of basaltic blueschists from the Deyader Metamorphic Complex (Makran Accretionary) Tj ETQq0 0 C Journal of Asian Earth Sciences, 2022, 228, 105141.	rgBT /Ove 2.3	erlock 10 Tf 7
3	The western Durkan Complex (Makran Accretionary Prism, SE Iran): A Late Cretaceous tectonically disrupted seamounts chain and its role in controlling deformation style. Geoscience Frontiers, 2021, 12, 101106.	8.4	16
4	New evidence for Late Cretaceous plume-related seamounts in the Middle East sector of the Neo-Tethys: Constraints from geochemistry, petrology, and mineral chemistry of the magmatic rocks from the western Durkan Complex (Makran Accretionary Prism, SE Iran). Lithos, 2021, 396-397, 106228.	1.4	11
5	The Bajgan Complex revealed as a Cretaceous ophiolite-bearing subduction complex: A key to unravel the geodynamics of Makran (southeast Iran). Journal of Asian Earth Sciences, 2021, 222, 104965.	2.3	9
6	Cretaceous tectonic evolution of the Neo-Tethys in Central Iran: Evidence from petrology and age of the Nain-Ashin ophiolitic basalts. Geoscience Frontiers, 2020, 11, 57-81.	8.4	34
7	Redefinition of the Ligurian Units at the Alps–Apennines junction (NW Italy) and their role in the evolution of the Ligurian accretionary wedge: constraints from mélanges and broken formations. Journal of the Geological Society, 2020, 177, 562-574.	2.1	17
8	Early Cretaceous Plume–Ridge Interaction Recorded in the Band-e-Zeyarat Ophiolite (North Makran,) Tj ETQq0 0 (Basel, Switzerland), 2020, 10, 1100.		verlock 10 T 12
9	The Ganj Complex reinterpreted as a Late Cretaceous volcanic arc: Implications for the geodynamic evolution of the North Makran domain (southeast Iran). Journal of Asian Earth Sciences, 2020, 195, 104306.	2.3	15
10	Spinel and plagioclase peridotites of the Nain ophiolite (Central Iran): Evidence for the incipient stage of oceanic basin formation. Lithos, 2018, 310-311, 1-19.	1.4	13
11	The Jurassic–Early Cretaceous basalt–chert association in the ophiolites of the Ankara Mélange, east of Ankara, Turkey: age and geochemistry. Geological Magazine, 2018, 155, 451-478.	1.5	22
12	New insights into the geodynamics of Neo-Tethys in the Makran area: Evidence from age and petrology of ophiolites from the Coloured Mélange Complex (SE Iran). Gondwana Research, 2018, 62, 306-327.	6.0	52
13	Time-progressive mantle-melt evolution and magma production in a Tethyan marginal sea: A case study of the Albanide-Hellenide ophiolites. Lithosphere, 2018, 10, 35-53.	1.4	53
14	Petrological and tectono-magmatic significance of ophiolitic basalts from the Elba Island within the Alpine Corsica-Northern Apennine system. Mineralogy and Petrology, 2016, 110, 713-730.	1.1	8
15	A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers, 2015, 6, 481-501.	8.4	282
16	Continental margin ophiolites of Neotethys: Remnants of Ancient Ocean–Continent Transition Zone (OCTZ) lithosphere and their geochemistry, mantle sources and melt evolution patterns. Episodes, 2015, 38, 230-249.	1.2	65
17	Mineral chemistry and petrology of highly magnesian ultramafic cumulates from the Sarve-Abad (Sawlava) ophiolites (Kurdistan, NW Iran): New evidence for boninitic magmatism in intra-oceanic fore-arc setting in the Neo-Tethys between Arabia and Iran. Journal of Asian Earth Sciences, 2014, 79, 312-328.	2.3	39
18	Petrology and geochemistry of mafic magmatic rocks from the Sarve-Abad ophiolites (Kurdistan) Tj ETQq0 0 0 rgB the southern Neo-Tethys Ocean. Tectonophysics, 2014, 621, 132-147.	T /Overloc 2.2	k 10 Tf 50 6 61

the southern Neo-Tethys Ocean. Tectonophysics, 2014, 621, 132-147.

#	Article	IF	CITATIONS
19	Geochronology and petrology of the Early Carboniferous Misho Mafic Complex (NW Iran), and implications for the melt evolution of Paleo-Tethyan rifting in Western Cimmeria. Lithos, 2013, 162-163, 264-278.	1.4	82
20	Geodynamic evolution of ophiolites from Albania and Greece (Dinaric-Hellenic belt): one, two, or more oceanic basins?. International Journal of Earth Sciences, 2013, 102, 783-811.	1.8	100
21	Geochemistry and petrology of the Kermanshah ophiolites (Iran): Implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean. Gondwana Research, 2013, 24, 392-411.	6.0	114
22	Radiolarian biostratigraphy and geochemistry of the Koziakas massif ophiolites (Greece). Bulletin - Societie Geologique De France, 2012, 183, 287-306.	2.2	27
23	Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the Albanian–Greek ophiolites and sub-ophiolitic mélanges. New constraints for the Triassic–Jurassic evolution of the Neo-Tethys in the Dinaride sector. Lithos, 2011, 124, 227-242.	1.4	79
24	Petrological and geochemical constraints on the origin of the Nehbandan ophiolitic complex (eastern Iran): Implication for the evolution of the Sistan Ocean. Lithos, 2010, 117, 209-228.	1.4	101
25	Petrogenesis and tectonic significance of Jurassic IAT magma types in the Hellenide ophiolites as deduced from the Rhodiani ophiolites (Pelagonian zone, Greece). Lithos, 2008, 104, 71-84.	1.4	36
26	Petrogenesis and tectonomagmatic significance of volcanic and subvolcanic rocks in the Albanide-Hellenide ophiolitic melanges. Island Arc, 2005, 14, 494-516.	1,1	53
27	Magma generation and crustal accretion as evidenced by supra-subduction ophiolites of the Albanide-Hellenide Subpelagonian zone. Island Arc, 2005, 14, 551-563.	1.1	72
28	Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): implications for magma genesis in a forearc setting. Lithos, 2004, 73, 229-253.	1.4	139
29	Triassic mid-ocean ridge basalts from the Argolis Peninsula (Greece): new constraints for the early oceanization phases of the Neo-Tethyan Pindos basin. Geological Society Special Publication, 2003, 218, 109-127.	1.3	18
30	Geodynamic Implications of Jurassic Ophiolites Associated with Island-Arc Volcanics, South Apuseni Mountains, Western Romania. International Geology Review, 2002, 44, 938-955.	2.1	34
31	Structural and geochemical data on the Rio Magno Unit: evidence for a new 'Apenninic' ophiolitic unit in Alpine Corsica and its geodynamic implications. Terra Nova, 2001, 13, 135-142.	2.1	13
32	Double Provenance of Sand-size Sediments in the Southern Aegean Forearc Basin. Journal of Sedimentary Research, 1987, Vol. 57, .	1.6	1