## Emilio Saccani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2336639/publications.pdf Version: 2024-02-01



EMILIO SACCANI

| #  | Article                                                                                                                                                                                                                                                                                                                | IF                          | CITATIONS            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|
| 1  | A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers, 2015, 6, 481-501.                                                                                                                        | 8.4                         | 282                  |
| 2  | Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): implications for magma genesis in a forearc setting. Lithos, 2004, 73, 229-253.                                                                                                                                                     | 1.4                         | 139                  |
| 3  | Geochemistry and petrology of the Kermanshah ophiolites (Iran): Implication for the interaction<br>between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys<br>Ocean. Gondwana Research, 2013, 24, 392-411.                                                                      | 6.0                         | 114                  |
| 4  | Petrological and geochemical constraints on the origin of the Nehbandan ophiolitic complex (eastern Iran): Implication for the evolution of the Sistan Ocean. Lithos, 2010, 117, 209-228.                                                                                                                              | 1.4                         | 101                  |
| 5  | Geodynamic evolution of ophiolites from Albania and Greece (Dinaric-Hellenic belt): one, two, or<br>more oceanic basins?. International Journal of Earth Sciences, 2013, 102, 783-811.                                                                                                                                 | 1.8                         | 100                  |
| 6  | Geochronology and petrology of the Early Carboniferous Misho Mafic Complex (NW Iran), and<br>implications for the melt evolution of Paleo-Tethyan rifting in Western Cimmeria. Lithos, 2013, 162-163,<br>264-278.                                                                                                      | 1.4                         | 82                   |
| 7  | Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the<br>Albanian–Greek ophiolites and sub-ophiolitic mélanges. New constraints for the Triassic–Jurassic<br>evolution of the Neo-Tethys in the Dinaride sector. Lithos, 2011, 124, 227-242.                                       | 1.4                         | 79                   |
| 8  | Magma generation and crustal accretion as evidenced by supra-subduction ophiolites of the Albanide-Hellenide Subpelagonian zone. Island Arc, 2005, 14, 551-563.                                                                                                                                                        | 1.1                         | 72                   |
| 9  | Continental margin ophiolites of Neotethys: Remnants of Ancient Ocean–Continent Transition Zone<br>(OCTZ) lithosphere and their geochemistry, mantle sources and melt evolution patterns. Episodes,<br>2015, 38, 230-249.                                                                                              | 1.2                         | 65                   |
| 10 | Petrology and geochemistry of mafic magmatic rocks from the Sarve-Abad ophiolites (Kurdistan) Tj ETQq0 0 0 the southern Neo-Tethys Ocean. Tectonophysics, 2014, 621, 132-147.                                                                                                                                          | rgBT /Overl<br>2 <b>.</b> 2 | ock 10 Tf 50 3<br>61 |
| 11 | Petrogenesis and tectonomagmatic significance of volcanic and subvolcanic rocks in the<br>Albanide-Hellenide ophiolitic melanges. Island Arc, 2005, 14, 494-516.                                                                                                                                                       | 1.1                         | 53                   |
| 12 | Time-progressive mantle-melt evolution and magma production in a Tethyan marginal sea: A case study of the Albanide-Hellenide ophiolites. Lithosphere, 2018, 10, 35-53.                                                                                                                                                | 1.4                         | 53                   |
| 13 | New insights into the geodynamics of Neo-Tethys in the Makran area: Evidence from age and petrology<br>of ophiolites from the Coloured Mélange Complex (SE Iran). Gondwana Research, 2018, 62, 306-327.                                                                                                                | 6.0                         | 52                   |
| 14 | Mineral chemistry and petrology of highly magnesian ultramafic cumulates from the Sarve-Abad<br>(Sawlava) ophiolites (Kurdistan, NW Iran): New evidence for boninitic magmatism in intra-oceanic<br>fore-arc setting in the Neo-Tethys between Arabia and Iran. Journal of Asian Earth Sciences, 2014, 79,<br>312-328. | 2.3                         | 39                   |
| 15 | Petrogenesis and tectonic significance of Jurassic IAT magma types in the Hellenide ophiolites as deduced from the Rhodiani ophiolites (Pelagonian zone, Greece). Lithos, 2008, 104, 71-84.                                                                                                                            | 1.4                         | 36                   |
| 16 | Geodynamic Implications of Jurassic Ophiolites Associated with Island-Arc Volcanics, South Apuseni<br>Mountains, Western Romania. International Geology Review, 2002, 44, 938-955.                                                                                                                                     | 2.1                         | 34                   |
| 17 | Cretaceous tectonic evolution of the Neo-Tethys in Central Iran: Evidence from petrology and age of the Nain-Ashin ophiolitic basalts. Geoscience Frontiers, 2020, 11, 57-81.                                                                                                                                          | 8.4                         | 34                   |
| 18 | Radiolarian biostratigraphy and geochemistry of the Koziakas massif ophiolites (Greece). Bulletin -<br>Societie Geologique De France, 2012, 183, 287-306.                                                                                                                                                              | 2.2                         | 27                   |

Emilio Saccani

| #  | Article                                                                                                                                                                                                                                                                                                | IF                | CITATIONS          |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 19 | The Jurassic–Early Cretaceous basalt–chert association in the ophiolites of the Ankara Mélange, east<br>of Ankara, Turkey: age and geochemistry. Geological Magazine, 2018, 155, 451-478.                                                                                                              | 1.5               | 22                 |
| 20 | Triassic mid-ocean ridge basalts from the Argolis Peninsula (Greece): new constraints for the early<br>oceanization phases of the Neo-Tethyan Pindos basin. Geological Society Special Publication, 2003, 218,<br>109-127.                                                                             | 1.3               | 18                 |
| 21 | Redefinition of the Ligurian Units at the Alps–Apennines junction (NW Italy) and their role in the<br>evolution of the Ligurian accretionary wedge: constraints from mélanges and broken formations.<br>Journal of the Geological Society, 2020, 177, 562-574.                                         | 2.1               | 17                 |
| 22 | The western Durkan Complex (Makran Accretionary Prism, SE Iran): A Late Cretaceous tectonically<br>disrupted seamounts chain and its role in controlling deformation style. Geoscience Frontiers, 2021,<br>12, 101106.                                                                                 | 8.4               | 16                 |
| 23 | The Ganj Complex reinterpreted as a Late Cretaceous volcanic arc: Implications for the geodynamic<br>evolution of the North Makran domain (southeast Iran). Journal of Asian Earth Sciences, 2020, 195,<br>104306.                                                                                     | 2.3               | 15                 |
| 24 | Structural and geochemical data on the Rio Magno Unit: evidence for a new 'Apenninic' ophiolitic unit in Alpine Corsica and its geodynamic implications. Terra Nova, 2001, 13, 135-142.                                                                                                                | 2.1               | 13                 |
| 25 | Spinel and plagioclase peridotites of the Nain ophiolite (Central Iran): Evidence for the incipient stage of oceanic basin formation. Lithos, 2018, 310-311, 1-19.                                                                                                                                     | 1.4               | 13                 |
| 26 | Early Cretaceous Plume–Ridge Interaction Recorded in the Band-e-Zeyarat Ophiolite (North Makran,) Tj ETQqO<br>(Basel, Switzerland), 2020, 10, 1100.                                                                                                                                                    | 0 0 rgBT /<br>2.0 | Overlock 10<br>12  |
| 27 | New evidence for Late Cretaceous plume-related seamounts in the Middle East sector of the<br>Neo-Tethys: Constraints from geochemistry, petrology, and mineral chemistry of the magmatic rocks<br>from the western Durkan Complex (Makran Accretionary Prism, SE Iran). Lithos, 2021, 396-397, 106228. | 1.4               | 11                 |
| 28 | The Bajgan Complex revealed as a Cretaceous ophiolite-bearing subduction complex: A key to unravel the geodynamics of Makran (southeast Iran). Journal of Asian Earth Sciences, 2021, 222, 104965.                                                                                                     | 2.3               | 9                  |
| 29 | Petrological and tectono-magmatic significance of ophiolitic basalts from the Elba Island within the Alpine Corsica-Northern Apennine system. Mineralogy and Petrology, 2016, 110, 713-730.                                                                                                            | 1.1               | 8                  |
| 30 | Geochemistry of basaltic blueschists from the Deyader Metamorphic Complex (Makran Accretionary) Tj ETQq0 0<br>Journal of Asian Earth Sciences, 2022, 228, 105141.                                                                                                                                      | 0 rgBT /Ov<br>2.3 | verlock 10 Tf<br>7 |
| 31 | Geochemical variability among stratiform chromitites and ultramafic rocks from Western Makran,<br>South Iran. Lithos, 2022, 412-413, 106591.                                                                                                                                                           | 1.4               | 3                  |
| 32 | Double Provenance of Sand-size Sediments in the Southern Aegean Forearc Basin. Journal of<br>Sedimentary Research, 1987, Vol. 57, .                                                                                                                                                                    | 1.6               | 1                  |