
Carol F Elias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2336471/publications.pdf Version: 2024-02-01

CAROL E FLIAS

#	Article	IF	CITATIONS
1	From Lesions to Leptin. Neuron, 1999, 22, 221-232.	3.8	1,065
2	Leptin Differentially Regulates NPY and POMC Neurons Projecting to the Lateral Hypothalamic Area. Neuron, 1999, 23, 775-786.	3.8	817
3	Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. Journal of Comparative Neurology, 1998, 402, 442-459.	0.9	783
4	Leptin Activates Hypothalamic CART Neurons Projecting to the Spinal Cord. Neuron, 1998, 21, 1375-1385.	3.8	717
5	Leptin targets in the mouse brain. Journal of Comparative Neurology, 2009, 514, 518-532.	0.9	417
6	Characterization of CART neurons in the rat and human hypothalamus. Journal of Comparative Neurology, 2001, 432, 1-19.	0.9	368
7	Chemical characterization of leptin-activated neurons in the rat brain. Journal of Comparative Neurology, 2000, 423, 261-281.	0.9	335
8	Direct Insulin and Leptin Action on Pro-opiomelanocortin Neurons Is Required for Normal Glucose Homeostasis and Fertility. Cell Metabolism, 2010, 11, 286-297.	7.2	321
9	Hypothalamic pathways linking energy balance and reproduction. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E827-E832.	1.8	291
10	Segregation of Acute Leptin and Insulin Effects in Distinct Populations of Arcuate Proopiomelanocortin Neurons. Journal of Neuroscience, 2010, 30, 2472-2479.	1.7	288
11	Leptin's effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. Journal of Clinical Investigation, 2011, 121, 355-368.	3.9	281
12	Leptin signaling and circuits in puberty and fertility. Cellular and Molecular Life Sciences, 2013, 70, 841-862.	2.4	142
13	Leptin action in pubertal development: recent advances and unanswered questions. Trends in Endocrinology and Metabolism, 2012, 23, 9-15.	3.1	122
14	Leptin Signaling in Kiss1 Neurons Arises after Pubertal Development. PLoS ONE, 2013, 8, e58698.	1.1	120
15	Hypothalamic Sites of Leptin Action Linking Metabolism and Reproduction. Neuroendocrinology, 2011, 93, 9-18.	1.2	113
16	The Ventral Premammillary Nucleus Links Fasting-Induced Changes in Leptin Levels and Coordinated Luteinizing Hormone Secretion. Journal of Neuroscience, 2009, 29, 5240-5250.	1.7	112
17	Delayed Puberty but Normal Fertility in Mice With Selective Deletion of Insulin Receptors From Kiss1 Cells. Endocrinology, 2013, 154, 1337-1348.	1.4	94
18	Inactivation of SOCS3 in leptin receptor-expressing cells protects mice from diet-induced insulin resistance but does not prevent obesity. Molecular Metabolism, 2014, 3, 608-618.	3.0	81

CAROL F ELIAS

#	Article	IF	CITATIONS
19	Shift in Kiss1 Cell Activity Requires Estrogen Receptor α. Journal of Neuroscience, 2013, 33, 2807-2820.	1.7	74
20	Estradiol modulates Kiss1 neuronal response to ghrelin. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E606-E614.	1.8	74
21	The Acute Effects of Leptin Require PI3K Signaling in the Hypothalamic Ventral Premammillary Nucleus. Journal of Neuroscience, 2011, 31, 13147-13156.	1.7	66
22	Leptin Induces Phosphorylation of Neuronal Nitric Oxide Synthase in Defined Hypothalamic Neurons. Endocrinology, 2010, 151, 5415-5427.	1.4	56
23	Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiological Reviews, 2018, 98, 2349-2380.	13.1	50
24	GABAergic Transmission to Kisspeptin Neurons Is Differentially Regulated by Time of Day and Estradiol in Female Mice. Journal of Neuroscience, 2014, 34, 16296-16308.	1.7	49
25	Female odors stimulate CART neurons in the ventral premammillary nucleus of male rats. Physiology and Behavior, 2006, 88, 160-166.	1.0	45
26	Insulin and Leptin Signaling Interact in the Mouse Kiss1 Neuron during the Peripubertal Period. PLoS ONE, 2015, 10, e0121974.	1.1	45
27	The centrally projecting Edinger–Westphal nucleus—I: Efferents in the rat brain. Journal of Chemical Neuroanatomy, 2015, 68, 22-38.	1.0	41
28	Loss of Fertility in the Absence of Progesterone Receptor Expression in Kisspeptin Neurons of Female Mice. PLoS ONE, 2016, 11, e0159534.	1.1	37
29	ERα in Tac2 Neurons Regulates Puberty Onset in Female Mice. Endocrinology, 2016, 157, 1555-1565.	1.4	36
30	Obesity and High-Fat Diet Induce Distinct Changes in Placental Gene Expression and Pregnancy Outcome. Endocrinology, 2018, 159, 1718-1733.	1.4	34
31	Chemical identity of hypothalamic neurons engaged by leptin in reproductive control. Journal of Chemical Neuroanatomy, 2014, 61-62, 233-238.	1.0	30
32	Exome Sequencing Reveals the POLR3H Gene as a Novel Cause of Primary Ovarian Insufficiency. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2827-2841.	1.8	28
33	Tyrosine Hydroxylase Neurons Regulate Growth Hormone Secretion via Short-Loop Negative Feedback. Journal of Neuroscience, 2020, 40, 4309-4322.	1.7	28
34	Obesity-Induced Infertility in Male Mice Is Associated With Disruption of Crisp4 Expression and Sperm Fertilization Capacity. Endocrinology, 2017, 158, 2930-2943.	1.4	26
35	Role of the adipocyte-derived hormone leptin in reproductive control. Hormone Molecular Biology and Clinical Investigation, 2014, 19, 141-149.	0.3	25
36	PI3K p110β subunit in leptin receptor expressing cells is required for the acute hypophagia induced by endotoxemia. Molecular Metabolism, 2016, 5, 379-391.	3.0	23

CAROL F ELIAS

#	Article	IF	CITATIONS
37	PI3Kα inactivation in leptin receptor cells increases leptin sensitivity but disrupts growth and reproduction. JCI Insight, 2017, 2, .	2.3	21
38	AMPKα2 in Kiss1 Neurons Is Required for Reproductive Adaptations to Acute Metabolic Challenges in Adult Female Mice. Endocrinology, 2016, 157, 4803-4816.	1.4	19
39	Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. Journal of Comparative Neurology, 1998, 402, 442-459.	0.9	19
40	Leptin receptor null mice with reexpression of LepR in GnRHR expressing cells display elevated FSH levels but remain in a prepubertal state. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1258-R1266.	0.9	17
41	Short-Term High-Fat Diet Increases Leptin Activation of CART Neurons and Advances Puberty in Female Mice. Endocrinology, 2017, 158, 3929-3942.	1.4	17
42	Minireview: Metabolic control of the reproductive physiology: Insights from genetic mouse models. Hormones and Behavior, 2014, 66, 7-14.	1.0	16
43	Protein tyrosine phosphatase-1B contributes to LPS-induced leptin resistance in male rats. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E40-E50.	1.8	16
44	A critical view of the use of genetic tools to unveil neural circuits: the case of leptin action in reproduction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R1-R9.	0.9	15
45	<scp>PI</scp> 3K signalling in leptin receptor cells: Role in growth and reproduction. Journal of Neuroendocrinology, 2019, 31, e12685.	1.2	15
46	Sexually dimorphic distribution of Prokr2 neurons revealed by the Prokr2-Cre mouse model. Brain Structure and Function, 2017, 222, 4111-4129.	1.2	14
47	Distribution of androgen receptor mRNA in the prepubertal male and female mouse brain. Journal of Neuroendocrinology, 2021, 33, e13063.	1.2	14
48	P110β in the ventromedial hypothalamus regulates glucose and energy metabolism. Experimental and Molecular Medicine, 2019, 51, 1-9.	3.2	10
49	Hypothalamic and Cell-Specific Transcriptomes Unravel a Dynamic Neuropil Remodeling in Leptin-Induced and Typical Pubertal Transition in Female Mice. IScience, 2020, 23, 101563.	1.9	10
50	PI3K signaling: A molecular pathway associated with acute hypophagic response during inflammatory challenges. Molecular and Cellular Endocrinology, 2016, 438, 36-41.	1.6	9
51	ERα Signaling in GHRH/Kiss1 Dual-Phenotype Neurons Plays Sex-Specific Roles in Growth and Puberty. Journal of Neuroscience, 2020, 40, 9455-9466.	1.7	8
52	From Precocious Puberty to Infertility: Metabolic Control of the Reproductive Function. Frontiers in Endocrinology, 2013, 4, 43.	1.5	7
53	Ablation of Growth Hormone Receptor in GABAergic Neurons Leads to Increased Pulsatile Growth Hormone Secretion. Endocrinology, 2022, 163, .	1.4	7
54	Insulin signaling in LepR cells modulates fat and glucose homeostasis independent of leptin. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E121-E134.	1.8	6

CAROL F ELIAS

#	Article	IF	CITATIONS
55	Dissociated Pmch and Cre Expression in Lactating Pmch-Cre BAC Transgenic Mice. Frontiers in Neuroanatomy, 2020, 14, 60.	0.9	5
56	Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. , 1998, 402, 442.		3
57	Editorial: Neuropeptides and Behavior: From Motivation to Psychopathology. Frontiers in Endocrinology, 2017, 8, 210.	1.5	2
58	Lack of AR in LepRb Cells Disrupts Ambulatory Activity and Neuroendocrine Axes in a Sex-Specific Manner in Mice. Endocrinology, 2020, 161, .	1.4	1
59	Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. , 1998, 402, 442.		1
60	Chemical characterization of leptin-activated neurons in the rat brain. , 2000, 423, 261.		1
61	Protocol to extract actively translated mRNAs from mouse hypothalamus by translating ribosome affinity purification. STAR Protocols, 2021, 2, 100589.	0.5	0