Jahangir Masud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2336078/publications.pdf

Version: 2024-02-01

304602 414303 1,583 32 22 32 h-index citations g-index papers 33 33 33 2207 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Low Temperature Electrochemical Extraction of Rare Earth Metals From Lignite Coal: An Environmentally Benign and Energy Efficient Method. Journal of the Electrochemical Society, 2022, 169, 023503.	1.3	1
2	Magn \tilde{A} ©li TiO2 as a High Durability Support for the Proton Exchange Membrane (PEM) Fuel Cell Catalysts. Energies, 2022, 15, 4437.	1.6	3
3	Nanostructured copper selenide as an ultrasensitive and selective non-enzymatic glucose sensor. Materials Advances, 2021, 2, 927-932.	2.6	18
4	Selective electroreduction of CO ₂ to carbon-rich products with a simple binary copper selenide electrocatalyst. Journal of Materials Chemistry A, 2021, 9, 7150-7161.	5.2	32
5	Understanding the Structural Evolution of a Nickel Chalcogenide Electrocatalyst Surface for Water Oxidation. Energy & Surface for Water Oxidation. Energy & Surface for Water Oxidation.	2.5	33
6	A Molecular Tetrahedral Cobalt–Seleno-Based Complex as an Efficient Electrocatalyst for Water Splitting. Molecules, 2021, 26, 945.	1.7	13
7	Cobalt Telluride: A Highly Efficient Trifunctional Electrocatalyst for Water Splitting and Oxygen Reduction. ACS Applied Energy Materials, 2021, 4, 8158-8174.	2.5	36
8	Electrochemical sensor based on CuSe for determination of dopamine. Mikrochimica Acta, 2020, 187, 440.	2.5	34
9	Ultrasensitive and Highly Selective Ni ₃ Te ₂ as a Nonenzymatic Glucose Sensor at Extremely Low Working Potential. ACS Omega, 2019, 4, 11152-11162.	1.6	19
10	A non-enzymatic glucose sensor based on a CoNi ₂ Se ₄ /rGO nanocomposite with ultrahigh sensitivity at low working potential. Journal of Materials Chemistry B, 2019, 7, 2338-2348.	2.9	58
11	Facile one-pot synthesis of NiCo ₂ Se ₄ -rGO on Ni foam for high performance hybrid supercapacitors. RSC Advances, 2019, 9, 37939-37946.	1.7	23
12	Nickel telluride as a bifunctional electrocatalyst for efficient water splitting in alkaline medium. Journal of Materials Chemistry A, 2018, 6, 7608-7622.	5.2	223
13	Facile synthesis of Ni3B/rGO nanocomposite as an efficient electrocatalyst for the oxygen evolution reaction in alkaline media. Electrochemistry Communications, 2018, 86, 121-125.	2.3	62
14	Copper Selenides as High-Efficiency Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 4075-4083.	2.5	114
15	Phase Exploration and Identification of Multinary Transition-Metal Selenides as High-Efficiency Oxygen Evolution Electrocatalysts through Combinatorial Electrodeposition. ACS Catalysis, 2018, 8, 8273-8289.	5.5	76
16	CoNi ₂ Se ₄ as an efficient bifunctional electrocatalyst for overall water splitting. Chemical Communications, 2017, 53, 5412-5415.	2.2	92
17	Textured NiSe2 Film: Bifunctional Electrocatalyst for Full Water Splitting at Remarkably Low Overpotential with High Energy Efficiency. Scientific Reports, 2017, 7, 2401.	1.6	104
18	FeNi ₂ Se ₄ â€"Reduced Graphene Oxide Nanocomposite: Enhancing Bifunctional Electrocatalytic Activity for Oxygen Evolution and Reduction through Synergistic Effects. Advanced Sustainable Systems, 2017, 1, 1700086.	2.7	35

#	Article	IF	CITATIONS
19	Enhancing electrocatalytic activity of bifunctional Ni ₃ Se ₂ for overall water splitting through etching-induced surface nanostructuring. Journal of Materials Research, 2016, 31, 2888-2896.	1.2	26
20	Co ₇ Se ₈ Nanostructures as Catalysts for Oxygen Reduction Reaction with High Methanol Tolerance. ACS Energy Letters, 2016, 1, 27-31.	8.8	45
21	A Molecular Niâ€complex Containing Tetrahedral Nickel Selenide Core as Highly Efficient Electrocatalyst for Water Oxidation. ChemSusChem, 2016, 9, 3128-3132.	3.6	80
22	A Molecular Ni-complex Containing Tetrahedral Nickel Selenide Core as Highly Efficient Electrocatalyst for Water Oxidation. ChemSusChem, 2016, 9, 3123-3123.	3.6	3
23	Cobalt Selenide Nanostructures: An Efficient Bifunctional Catalyst with High Current Density at Low Coverage. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17292-17302.	4.0	156
24	A Rh _x S _y /C Catalyst for the Hydrogen Oxidation and Hydrogen Evolution Reactions in HBr. Journal of the Electrochemical Society, 2015, 162, F455-F462.	1.3	31
25	Synthesis and Characterization of RhxSy/C Catalysts for HOR/HER in HBr. ECS Transactions, 2014, 58, 37-43.	0.3	3
26	Electrocatalytic oxidation of methanol at tantalum oxide-modified Pt electrodes. Journal of Power Sources, 2012, 220, 399-404.	4.0	38
27	Differential Capacitance at $Au(111)$ in 1-Alkyl-3-methylimidazolium Tetrafluoroborate Based Room-Temperature Ionic Liquids. Journal of Physical Chemistry C, 2011, 115, 19797-19804.	1.5	71
28	Enhanced Electrocatalysis of Oxygen Reduction on Pt/TaO _{<i>x</i>} /GC. Journal of Physical Chemistry C, 2011, 115, 25557-25567.	1.5	78
29	Catalytic Electrooxidation of Formaldehyde at Ta2O5-modified Pt Electrodes. Chemistry Letters, 2011, 40, 252-254.	0.7	12
30	Enhanced electrooxidation of formic acid at Ta2O5-modified Pt electrode. Electrochemistry Communications, 2011, 13, 86-89.	2.3	34
31	Kinetics of oxygen reduction reaction at electrochemically fabricated tin-palladium bimetallic electrocatalyst in acidic media. Electrochimica Acta, 2010, 56, 285-290.	2.6	16
32	In situ fabricated iodine-adlayer assisted selective electrooxidation of uric acid in alkaline media. Electrochimica Acta, 2008, 54, 316-321.	2.6	14