Annemie M W J Schols

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2336044/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Official American Thoracic Society/European Respiratory Society Statement: Key Concepts and Advances in Pulmonary Rehabilitation. American Journal of Respiratory and Critical Care Medicine, 2013, 188, e13-e64.	5.6	2,668
2	Bioelectrical impedance analysis?part I: review of principles and methods. Clinical Nutrition, 2004, 23, 1226-1243.	5.0	2,089
3	Cachexia: A new definition. Clinical Nutrition, 2008, 27, 793-799.	5.0	1,906
4	American Thoracic Society/European Respiratory Society Statement on Pulmonary Rehabilitation. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 1390-1413.	5.6	1,644
5	Bioelectrical impedance analysis—part II: utilization in clinical practice. Clinical Nutrition, 2004, 23, 1430-1453.	5.0	1,643
6	An Official American Thoracic Society/European Respiratory Society Statement: Update on Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2014, 189, e15-e62.	5.6	793
7	Mortality and Mortality-Related Factors After Hospitalization for Acute Exacerbation of COPD. Chest, 2003, 124, 459-467.	0.8	668
8	Prevalence and Characteristics of Nutritional Depletion in Patients with Stable COPD Eligible for Pulmonary Rehabilitation. The American Review of Respiratory Disease, 1993, 147, 1151-1156.	2.9	597
9	Body composition and mortality in chronic obstructive pulmonary disease. American Journal of Clinical Nutrition, 2005, 82, 53-59.	4.7	591
10	Nutritional Recommendations for the Management of Sarcopenia. Journal of the American Medical Directors Association, 2010, 11, 391-396.	2.5	548
11	Body composition and mortality in chronic obstructive pulmonary disease. American Journal of Clinical Nutrition, 2005, 82, 53-59.	4.7	503
12	Sarcopenia: A Time for Action. An SCWD Position Paper. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 956-961.	7.3	410
13	Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factorâ€Ŷî'. FASEB Journal, 2001, 15, 1169-1180.	0.5	380
14	Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy perspectives. American Journal of Clinical Nutrition, 2000, 71, 1033-1047.	4.7	325
15	Chronic kidney disease and premature ageing. Nature Reviews Nephrology, 2014, 10, 732-742.	9.6	302
16	Tumor necrosis factorâ€alpha inhibits myogenic differentiation through MyoD protein destabilization. FASEB Journal, 2004, 18, 227-237.	0.5	281
17	Systemic Effects in COPD. Chest, 2002, 121, 127S-130S.	0.8	257
18	Nutritional assessment and therapy in COPD: a European Respiratory Society statement. European Respiratory Journal, 2014, 44, 1504-1520.	6.7	233

#	Article	IF	CITATIONS
19	Muscle fibre type shifting in the vastus lateralis of patients with COPD is associated with disease severity: a systematic review and meta-analysis. Thorax, 2007, 62, 944-949.	5.6	224
20	Skeletal muscle weakness is associated with wasting of extremity fat-free mass but not with airflow obstruction in patients with chronic obstructive pulmonary disease. American Journal of Clinical Nutrition, 2000, 71, 733-738.	4.7	188
21	Pulmonary Function in Diabetes. Chest, 2010, 138, 393-406.	0.8	188
22	A Role for Anabolic Steroids in the Rehabilitation of Patients With COPD? *. Chest, 2003, 124, 1733-1742.	0.8	186
23	Efficacy of nutritional aupplementation therapy in depleted patients with chronic obstructive pulmonary disease. Nutrition, 2003, 19, 120-127.	2.4	182
24	Striking Similarities in Systemic Factors Contributing to Decreased Exercise Capacity in Patients With Severe Chronic Heart Failure or COPD. Chest, 2003, 123, 1416-1424.	0.8	179
25	Mechanisms of Chronic Muscle Wasting and Dysfunction after an Intensive Care Unit Stay. A Pilot Study. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 821-830.	5.6	176
26	Muscle fiber type IIX atrophy is involved in the loss of fat-free mass in chronic obstructive pulmonary disease,,. American Journal of Clinical Nutrition, 2002, 76, 113-119.	4.7	168
27	Rehabilitation Decreases Exercise-induced Oxidative Stress in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 994-1001.	5.6	161
28	Modifiable risk factors for the prevention of bladder cancer: a systematic review of meta-analyses. European Journal of Epidemiology, 2016, 31, 811-851.	5.7	151
29	The Prevalence of Metabolic Syndrome In Chronic Obstructive Pulmonary Disease: A Systematic Review. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2016, 13, 399-406.	1.6	125
30	Effects of Whole-Body Exercise Training on Body Composition and Functional Capacity in Normal-Weight Patients With COPD. Chest, 2004, 125, 2021-2028.	0.8	122
31	Efficacy and Costs of Nutritional Rehabilitation in Muscle-Wasted Patients With Chronic Obstructive Pulmonary Disease in a Community-Based Setting: A Prespecified Subgroup Analysis of the INTERCOM Trial. Journal of the American Medical Directors Association, 2010, 11, 179-187.	2.5	113
32	Problematic Activities of Daily Life are Weakly Associated With Clinical Characteristics in COPD. Journal of the American Medical Directors Association, 2012, 13, 284-290.	2.5	108
33	Cachexia in chronic obstructive pulmonary disease: new insights and therapeutic perspective. Journal of Cachexia, Sarcopenia and Muscle, 2016, 7, 5-22.	7.3	107
34	Factors contributing to alterations in skeletal muscle and plasma amino acid profiles in patients with chronic obstructive pulmonary disease. American Journal of Clinical Nutrition, 2000, 72, 1480-1487.	4.7	106
35	Limb Muscle Dysfunction in COPD: Effects of Muscle Wasting and Exercise Training. Medicine and Science in Sports and Exercise, 2005, 37, 2-9.	0.4	102
36	A randomized clinical trial investigating the efficacy of targeted nutrition as adjunct to exercise training in COPD. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 748-758.	7.3	102

#	Article	IF	CITATIONS
37	<p>Preserving Mobility in Older Adults with Physical Frailty and Sarcopenia: Opportunities, Challenges, and Recommendations for Physical Activity Interventions</p> . Clinical Interventions in Aging, 2020, Volume 15, 1675-1690.	2.9	100
38	Similarities in Skeletal Muscle Strength and Exercise Capacity Between Renal Transplant and Hemodialysis Patients. American Journal of Transplantation, 2005, 5, 1957-1965.	4.7	99
39	Autophagy in Locomotor Muscles of Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1313-1320.	5.6	92
40	Loss of quadriceps muscle oxidative phenotype and decreased endurance in patients with mild-to-moderate COPD. Journal of Applied Physiology, 2013, 114, 1319-1328.	2.5	91
41	Multicomponent intervention to prevent mobility disability in frail older adults: randomised controlled trial (SPRINTT project). BMJ, The, 2022, 377, e068788.	6.0	90
42	Supplementation of soy protein with branched-chain amino acids alters protein metabolism in healthy elderly and even more in patients with chronic obstructive pulmonary disease. American Journal of Clinical Nutrition, 2007, 85, 431-439.	4.7	87
43	Is age-related decline in lean mass and physical function accelerated by obstructive lung disease or smoking?. Thorax, 2011, 66, 961-969.	5.6	85
44	Greater whole-body myofibrillar protein breakdown in cachectic patients with chronic obstructive pulmonary disease. American Journal of Clinical Nutrition, 2006, 83, 829-834.	4.7	82
45	Extrapulmonary Manifestations of Chronic Obstructive Pulmonary Disease in a Mouse Model of Chronic Cigarette Smoke Exposure. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 710-716.	2.9	79
46	Task-Related Oxygen Uptake During Domestic Activities of Daily Life in Patients With COPD and Healthy Elderly Subjects. Chest, 2011, 140, 970-979.	0.8	79
47	Pulmonary cachexia. International Journal of Cardiology, 2002, 85, 101-110.	1.7	78
48	The influence of abdominal visceral fat on inflammatory pathways and mortality risk in obstructive lung disease. American Journal of Clinical Nutrition, 2012, 96, 516-526.	4.7	78
49	Differences in Walking Pattern during 6-Min Walk Test between Patients with COPD and Healthy Subjects. PLoS ONE, 2012, 7, e37329.	2.5	76
50	NF-κB Activation Is Required for the Transition of Pulmonary Inflammation to Muscle Atrophy. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 288-297.	2.9	71
51	European white paper: oropharyngeal dysphagia in head and neck cancer. European Archives of Oto-Rhino-Laryngology, 2021, 278, 577-616.	1.6	66
52	Energy balance in depleted ambulatory patients with chronic obstructive pulmonary disease: the effect of physical activity and oral nutritional supplementation. British Journal of Nutrition, 2003, 89, 725-729.	2.3	62
53	Heterogeneity of quadriceps muscle phenotype in chronic obstructive pulmonary disease (<scp>Copd</scp>); implications for stratified medicine?. Muscle and Nerve, 2013, 48, 488-497.	2.2	61
54	The "Sarcopenia and Physical fRailty IN older people: multi-componenT Treatment strategies―(SPRINTT) randomized controlled trial: Case finding, screening and characteristics of eligible participants. Experimental Gerontology, 2018, 113, 48-57.	2.8	61

#	Article	IF	CITATIONS
55	Glycogen Synthase Kinase 3Î ² Suppresses Myogenic Differentiation through Negative Regulation of NFATc3. Journal of Biological Chemistry, 2008, 283, 358-366.	3.4	60
56	Behavioural changes, sharing behaviour and psychological responses after receiving direct-to-consumer genetic test results: a systematic review and meta-analysis. Journal of Community Genetics, 2018, 9, 1-18.	1.2	60
57	Cellular protein breakdown and systemic inflammation are unaffected by pulmonary rehabilitation in COPD. Thorax, 2007, 62, 109-114.	5.6	57
58	The Functional, Metabolic, and Anabolic Responses to Exercise Training in Renal Transplant and Hemodialysis Patients. Transplantation, 2007, 83, 1059-1068.	1.0	56
59	Antagonistic implications of sarcopenia and abdominal obesity on physical performance in COPD. European Respiratory Journal, 2015, 46, 336-345.	6.7	56
60	Optimizing oral nutritional drink supplementation in patients with chronic obstructive pulmonary disease. British Journal of Nutrition, 2005, 93, 965-971.	2.3	54
61	Transcutaneous Oxygen Saturation and Carbon Dioxide Tension during Meals in Patients with Chronic Obstructive Pulmonary Disease. Chest, 1991, 100, 1287-1292.	0.8	53
62	Alterations in the <i>in vitro</i> and <i>in vivo</i> regulation of muscle regeneration in healthy ageing and the influence of sarcopenia. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 93-105.	7.3	53
63	Measuring body composition in chronic heart failure: A comparison of methods. European Journal of Heart Failure, 2006, 8, 208-214.	7.1	51
64	Abdominal fat mass contributes to the systemic inflammation in chronic obstructive pulmonary disease. Clinical Nutrition, 2010, 29, 756-760.	5.0	51
65	Targeted medical nutrition for cachexia in chronic obstructive pulmonary disease: a randomized, controlled trial. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 28-40.	7.3	51
66	Low-grade adipose tissue inflammation in patients with mild-to-moderate chronic obstructive pulmonary disease. American Journal of Clinical Nutrition, 2011, 94, 1504-1512.	4.7	50
67	A new direction in psychology and health: Resistance exercise training for obese children and adolescents. Psychology and Health, 2016, 31, 1-8.	2.2	48
68	Psychological co-morbidities in COPD: Targeting systemic inflammation, a benefit for both?. European Journal of Pharmacology, 2019, 842, 99-110.	3.5	48
69	Characterization of the inflammatory and metabolic profile of adipose tissue in a mouse model of chronic hypoxia. Journal of Applied Physiology, 2013, 114, 1619-1628.	2.5	45
70	Inventory of Nutritional Status in Patients with COPD. Chest, 1989, 96, 247-249.	0.8	43
71	Dietary change, nutrition education and chronic obstructive pulmonary disease. Patient Education and Counseling, 2004, 52, 249-257.	2.2	43
72	Nutritional Interventions in Cancer Cachexia: Evidence and Perspectives From Experimental Models. Frontiers in Nutrition, 2020, 7, 601329.	3.7	43

5

#	Article	IF	CITATIONS
73	Diseaseâ€induced and treatmentâ€induced alterations in body composition in locally advanced head and neck squamous cell carcinoma. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 145-159.	7.3	42
74	Central Fat and Peripheral Muscle. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 8-13.	5.6	41
75	Dietary fibre and fatty acids in chronic obstructive pulmonary disease risk and progression: a systematic review. Respirology, 2014, 19, 176-184.	2.3	39
76	Loss of oxidative defense and potential blockade of satellite cell maturation in the skeletal muscle of patients with cancer but not in the healthy elderly. Aging, 2016, 8, 1690-1702.	3.1	38
77	Response of whole-body protein and urea turnover to exercise differs between patients with chronic obstructive pulmonary disease with and without emphysema. American Journal of Clinical Nutrition, 2003, 77, 868-874.	4.7	37
78	Distinct responses of protein turnover regulatory pathways in hypoxia- and semistarvation-induced muscle atrophy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L82-L91.	2.9	37
79	Nutritional modulation as part of the integrated management of chronic obstructive pulmonary disease. Proceedings of the Nutrition Society, 2003, 62, 783-791.	1.0	36
80	Increased Myogenic and Protein Turnover Signaling in Skeletal Muscle of Chronic Obstructive Pulmonary Disease Patients With Sarcopenia. Journal of the American Medical Directors Association, 2017, 18, 637.e1-637.e11.	2.5	36
81	Muscle Quality is More Impaired in Sarcopenic Patients With Chronic Obstructive Pulmonary Disease. Journal of the American Medical Directors Association, 2016, 17, 415-420.	2.5	35
82	Skeletal muscle unloading results in increased mitophagy and decreased mitochondrial biogenesis regulation. Muscle and Nerve, 2019, 60, 769-778.	2.2	35
83	Impaired exercise training-induced muscle fiber hypertrophy and Akt/mTOR pathway activation in hypoxemic patients with COPD. Journal of Applied Physiology, 2015, 118, 1040-1049.	2.5	34
84	Nutrition as a Metabolic Modulator in COPD. Chest, 2013, 144, 1340-1345.	0.8	33
85	Handgrip weakness, low fatâ€free mass, and overall survival in nonâ€small cell lung cancer treated with curativeâ€intent radiotherapy. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 424-431.	7.3	33
86	The pathophysiology of cachexia in chronic obstructive pulmonary disease. Current Opinion in Supportive and Palliative Care, 2009, 3, 282-287.	1.3	30
87	Cognitive impairment in chronic obstructive pulmonary disease: disease burden, determinants and possible future interventions. Expert Review of Respiratory Medicine, 2018, 12, 1061-1074.	2.5	30
88	Pathways associated with reduced quadriceps oxidative fibres and endurance in COPD. European Respiratory Journal, 2013, 41, 1275-1283.	6.7	29
89	Resveratrol for patients with chronic obstructive pulmonary disease. Current Opinion in Clinical Nutrition and Metabolic Care, 2018, 21, 138-144.	2.5	29
90	Hypoxia differentially regulates muscle oxidative fiber type and metabolism in a HIF-1α-dependent manner. Cellular Signalling, 2014, 26, 1837-1845.	3.6	28

#	Article	IF	CITATIONS
91	Nutrient Status Assessment in Individuals and Populations for Healthy Aging—Statement from an Expert Workshop. Nutrients, 2015, 7, 10491-10500.	4.1	28
92	Sarcopenia in Advanced COPD Affects Cardiometabolic Risk Reduction by Short-Term High-intensity Pulmonary Rehabilitation. Journal of the American Medical Directors Association, 2016, 17, 814-820.	2.5	28
93	Metabolic effects of glutamine and glutamate ingestion in healthy subjects and in persons with chronic obstructive pulmonary disease. American Journal of Clinical Nutrition, 2006, 83, 115-23.	4.7	28
94	Palmitate-induced skeletal muscle insulin resistance does not require NF-κB activation. Cellular and Molecular Life Sciences, 2011, 68, 1215-1225.	5.4	27
95	Clinical outcome and cost-effectiveness of a 1-year nutritional intervention programme in COPD patients with low muscle mass: The randomized controlled NUTRAIN trial. Clinical Nutrition, 2020, 39, 405-413.	5.0	27
96	Iron deficiencyâ€induced loss of skeletal muscle mitochondrial proteins and respiratory capacity; the role of mitophagy and secretion of mitochondriaâ€containing vesicles. FASEB Journal, 2020, 34, 6703-6717.	0.5	27
97	Normal Weight but Low Muscle Mass and Abdominally Obese: Implications for the Cardiometabolic Risk Profile in Chronic Obstructive Pulmonary Disease. Journal of the American Medical Directors Association, 2017, 18, 533-538.	2.5	26
98	Resveratrol and metabolic health in COPD: A proof-of-concept randomized controlled trial. Clinical Nutrition, 2020, 39, 2989-2997.	5.0	25
99	Increased postabsorptive and exercise-induced whole-body glucose production in patients with chronic obstructive pulmonary disease. Metabolism: Clinical and Experimental, 2011, 60, 957-964.	3.4	24
100	Nutritional targets to enhance exercise performance in chronic obstructive pulmonary disease. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 553-560.	2.5	24
101	Maintenance of a Physically Active Lifestyle After Pulmonary Rehabilitation in Patients With COPD: A Qualitative Study Toward Motivational Factors. Journal of the American Medical Directors Association, 2014, 15, 655-664.	2.5	24
102	Towards Personalized Management of Sarcopenia in COPD. International Journal of COPD, 2021, Volume 16, 25-40.	2.3	24
103	Evidence-based practice within nutrition: what are the barriers for improving the evidence and how can they be dealt with?. Trials, 2017, 18, 425.	1.6	23
104	Nutrition as a modifiable factor in the onset and progression of pulmonary function impairment in COPD: a systematic review. Nutrition Reviews, 2022, 80, 1434-1444.	5.8	23
105	Different effects of corticosteroid-induced muscle wasting compared with undernutrition on rat diaphragm energy metabolism. European Journal of Applied Physiology, 2000, 82, 493-498.	2.5	22
106	Early body weight loss during concurrent chemoâ€radiotherapy for nonâ€small cell lung cancer. Journal of Cachexia, Sarcopenia and Muscle, 2014, 5, 127-137.	7.3	22
107	Casein protein results in higher prandial and exercise induced whole body protein anabolism than whey protein in Chronic Obstructive Pulmonary Disease. Metabolism: Clinical and Experimental, 2012, 61, 1289-1300.	3.4	21
108	The effect of acute and 7-days dietary nitrate on mechanical efficiency, exercise performance and cardiac biomarkers in patients with chronic obstructive pulmonary disease. Clinical Nutrition, 2018, 37, 1852-1861.	5.0	21

#	Article	IF	CITATIONS
109	Is Cancer Cachexia Attributed to Impairments in Basal or Postprandial Muscle Protein Metabolism?. Nutrients, 2016, 8, 499.	4.1	19
110	Distinct skeletal muscle molecular responses to pulmonary rehabilitation in chronic obstructive pulmonary disease: a cluster analysis. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 311-322.	7.3	19
111	Altered interorgan response to feeding in patients with chronic obstructive pulmonary disease. American Journal of Clinical Nutrition, 2005, 82, 366-372.	4.7	18
112	The 2014 ESPEN Arvid Wretlind Lecture: Metabolism & nutrition: Shifting paradigms in COPD management. Clinical Nutrition, 2015, 34, 1074-1079.	5.0	18
113	The Psychological Effects of Strength Exercises in People who are Overweight or Obese: A Systematic Review. Sports Medicine, 2017, 47, 2069-2081.	6.5	18
114	Glucocorticoid Receptor Signaling Impairs Protein Turnover Regulation in Hypoxia-Induced Muscle Atrophy in Male Mice. Endocrinology, 2018, 159, 519-534.	2.8	18
115	Safety and Tolerability of Targeted Medical Nutrition for Cachexia in Non-Small-Cell Lung Cancer: A Randomized, Double-Blind, Controlled Pilot Trial. Nutrition and Cancer, 2020, 72, 439-450.	2.0	18
116	The prognostic value of weight and body composition changes in patients with nonâ€smallâ€cell lung cancer treated with nivolumab. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 657-664.	7.3	18
117	Altered interorgan response to feeding in patients with chronic obstructive pulmonary disease. American Journal of Clinical Nutrition, 2005, 82, 366-372.	4.7	17
118	<p>Cross-sectional and longitudinal assessment of muscle from regular chest computed tomography scans: L1 and pectoralis muscle compared to L3 as reference in non-small cell lung cancer</p> . International Journal of COPD, 2019, Volume 14, 781-789.	2.3	17
119	Preserved muscle oxidative metabolic phenotype in newly diagnosed nonâ€small cell lung cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2015, 6, 164-173.	7.3	16
120	Alterations in Skeletal Muscle Oxidative Phenotype in Mice Exposed to 3 Weeks of Normobaric Hypoxia. Journal of Cellular Physiology, 2016, 231, 377-392.	4.1	16
121	Prediction model for tube feeding dependency during chemoradiotherapy for at least four weeks in head and neck cancer patients: A tool for prophylactic gastrostomy decision making. Clinical Nutrition, 2020, 39, 2600-2608.	5.0	16
122	Automated CT-derived skeletal muscle mass determination in lower hind limbs of mice using a 3D U-Net deep learning network. Journal of Applied Physiology, 2020, 128, 42-49.	2.5	15
123	Regulation of Skeletal Muscle Plasticity by Glycogen Synthase Kinase-3β: A Potential Target for the Treatment of Muscle Wasting. Current Pharmaceutical Design, 2013, 19, 3276-3298.	1.9	15
124	Systemic inflammation in chronic obstructive pulmonary disease and lung cancer. Current Opinion in Supportive and Palliative Care, 2014, 8, 339-345.	1.3	14
125	Pulmonary rehabilitation, physical activity, respiratory failure and palliative respiratory care. Thorax, 2019, 74, 693-699.	5.6	14
126	Malnutrition screening in head and neck cancer patients with oropharyngeal dysphagia. Clinical Nutrition ESPEN, 2021, 44, 348-355.	1.2	14

#	Article	IF	CITATIONS
127	Aerobic and strength exercises for youngsters aged 12 to 15: what do parents think?. BMC Public Health, 2015, 15, 994.	2.9	13
128	Development, Implementation, and Evaluation of an Interdisciplinary Theory- and Evidence-Based Intervention to Prevent Childhood Obesity: Theoretical and Methodological Lessons Learned. Frontiers in Public Health, 2017, 5, 352.	2.7	13
129	Altered protein turnover signaling and myogenesis during impaired recovery of inflammation-induced muscle atrophy in emphysematous mice. Scientific Reports, 2018, 8, 10761.	3.3	13
130	Whole body protein anabolism in COPD patients and healthy older adults is not enhanced by adding either carbohydrates or leucine to a serving of protein. Clinical Nutrition, 2019, 38, 1684-1691.	5.0	13
131	Measuring successful aging: an exploratory factor analysis of the InCHIANTI Study into different health domains. Aging, 2019, 11, 3023-3040.	3.1	13
132	Differential regulation of muscle protein turnover in response to emphysema and acute pulmonary inflammation. Respiratory Research, 2017, 18, 75.	3.6	12
133	Physical exercise at the crossroad between muscle wasting and the immune system: implications for lung cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 55-67.	7.3	12
134	Nutrition and outcome in chronic respiratory disease. Nutrition, 1997, 13, 161-163.	2.4	11
135	The Muscle Oxidative Regulatory Response to Acute Exercise Is Not Impaired in Less Advanced COPD Despite a Decreased Oxidative Phenotype. PLoS ONE, 2014, 9, e90150.	2.5	11
136	Nutritional advances in patients with respiratory diseases. European Respiratory Review, 2015, 24, 17-22.	7.1	11
137	Impaired Skeletal Muscle Kynurenine Metabolism in Patients with Chronic Obstructive Pulmonary Disease. Journal of Clinical Medicine, 2019, 8, 915.	2.4	11
138	De novo glutamine synthesis induced by corticosteroids in vivo in rats is secondary to weight loss. Clinical Nutrition, 2004, 23, 1035-1042.	5.0	10
139	<i>Trans</i> Fatty Acidâ€Induced NFâ€ÎºB Activation Does Not Induce Insulin Resistance in Cultured Murine Skeletal Muscle Cells. Lipids, 2010, 45, 285-290.	1.7	10
140	Combating adolescent obesity. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17, 521-524.	2.5	10
141	Contractile properties and histochemical characteristics of the rat diaphragm after prolonged triamcinolone treatment and nutritional deprivation. Journal of Muscle Research and Cell Motility, 1998, 19, 549-555.	2.0	9
142	Towards a multidimensional healthy ageing phenotype. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 418-426.	2.5	9
143	A Multidimensional Risk Score to Predict All-Cause Hospitalization in Community-Dwelling Older Individuals With Obstructive Lung Disease. Journal of the American Medical Directors Association, 2016, 17, 508-513.	2.5	9
144	A novel in vitro model for the assessment of postnatal myonuclear accretion. Skeletal Muscle, 2018, 8, 4.	4.2	9

#	Article	IF	CITATIONS
145	A Benefit of Being Heavier Is Being Strong: a Cross-Sectional Study in Young Adults. Sports Medicine - Open, 2018, 4, 12.	3.1	9
146	CT-derived muscle remodelling after bronchoscopic lung volume reduction in advanced emphysema. Thorax, 2019, 74, 206-207.	5.6	9
147	ACE Gene Polymorphism in COPD. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 572-572.	5.6	8
148	Decreased Whole-Body and Splanchnic Glutamate Metabolism in Healthy Elderly Men and Patients with Chronic Obstructive Pulmonary Disease in the Postabsorptive State and in Response to Feeding. Journal of Nutrition, 2005, 135, 2166-2170.	2.9	8
149	Effect of glutamate ingestion on whole-body glutamate turnover in healthy elderly and patients with chronic obstructive pulmonary disease. Nutrition, 2006, 22, 496-503.	2.4	8
150	Metabolic and functional effects of glutamate intake in patients with chronic obstructive pulmonary disease (COPD). Clinical Nutrition, 2008, 27, 408-415.	5.0	8
151	Coordinated regulation of skeletal muscle mass and metabolic plasticity during recovery from disuse. FASEB Journal, 2019, 33, 1288-1298.	0.5	8
152	Another way of looking at treatment stability. Angle Orthodontist, 2016, 86, 721-726.	2.4	7
153	Imaging approaches to understand disease complexity: chronic obstructive pulmonary disease as a clinical model. Journal of Applied Physiology, 2018, 124, 512-520.	2.5	7
154	Are patients with stage III non-small cell lung cancer treated with chemoradiotherapy at risk for cardiac events? Results from a retrospective cohort study. BMJ Open, 2020, 10, e036492.	1.9	5
155	Working memory training efficacy in COPD: the randomised, double-blind, placebo-controlled Cogtrain trial. ERJ Open Research, 2021, 7, 00475-2021.	2.6	5
156	Brown adipose tissue activation is not related to hypermetabolism in emphysematous chronic obstructive pulmonary disease patients. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1329-1338.	7.3	5
157	A Scoping Literature Review of the Relation between Nutrition and ASD Symptoms in Children. Nutrients, 2022, 14, 1389.	4.1	5
158	Tooth extractions prior to chemoradiation or bioradiation are associated with weight loss during treatment for locally advanced oropharyngeal cancer. Supportive Care in Cancer, 2022, 30, 5329-5338.	2.2	5
159	Cognitive performance in relation to metabolic disturbances in patients with COPD. Clinical Nutrition, 2021, 40, 2061-2067.	5.0	3
160	Pulmonary Rehabilitation in the Management of Chronic Obstructive Pulmonary Disease among Asian Indians- Current Status and Moving Forward. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2021, 18, 476-481.	1.6	3
161	Effect of targeted nutrient supplementation on physical activity and health-related quality of life in COPD: study protocol for the randomised controlled NUTRECOVER trial. BMJ Open, 2022, 12, e059252.	1.9	3
162	Muscle Metabolic Modulation by Chronic Hypoxia. Journal of Proteome Research, 2007, 6, 3400-3401.	3.7	2

#	Article	IF	CITATIONS
163	Low Bone Mineral Density in Emphysema: Epiphenomenon of a Wasting Phenotype?. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 1087-1088.	5.6	2
164	Reference values for vastus lateralis fiber type proportions and fiber size. Journal of Applied Physiology, 2013, 115, 771-771.	2.5	2
165	Stages of behavioural change after direct-to-consumer disease risk profiling: study protocol of two integrated controlled pragmatic trials. Trials, 2018, 19, 240.	1.6	2
166	Network Analysis of Genome-Wide Association Studies for Chronic Obstructive Pulmonary Disease in the Context of Biological Pathways. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1439-1441.	5.6	2
167	Targeted Medical Nutrition in Pre-Cachectic Patients with Non-Small-Cell Lung Cancer: A Subgroup Analysis. Nutrition and Cancer, 2021, 73, 899-900.	2.0	2
168	Prise en charge nutritionnelle et effets respiratoires des apports nutritionnels chez l'insuffisant respiratoire chronique. Nutrition Clinique Et Metabolisme, 1998, 12, 271-282.	0.5	1
169	Nutrition in Pulmonary Rehabilitation. , 2018, , 145-157.		1
170	The Authors reply: Comment on: "Handgrip weakness, low fatâ€free mass, and overall survival in nonâ€small cell lung cancer treated with curativeâ€intent radiotherapy†by Burtin et al Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 526-527.	7.3	1
171	Effect of Bronchoscopic Lung Volume Reduction in Advanced Emphysema on Energy Balance Regulation. Respiration, 2021, , 1-8.	2.6	1
172	Physiological effects of nutritional supplementation as adjunct to exercise training in COPD patients with low muscle mass. The double blind, placebo controlled multi-centre NUTRAIN-trial. , 2016, , .		1
173	Weight-status Related Differences in Reflective and Impulsive Determinants of Physical Activity in Youngsters (8–18 years old). Health Psychology Bulletin, 2020, 4, 29.	0.3	1
174	Daily protein intakes and eating patterns in young and elderly French. British Journal of Nutrition, 2003, 90, 1142-1142.	2.3	0
175	Diabetes and Lung Function: Response. Chest, 2011, 139, 236.	0.8	Ο
176	Expression of PPAR mRNA and protein levels in skeletal muscle of patients with chronic obstructive pulmonary disease (COPD). FASEB Journal, 2006, 20, A386.	0.5	0
177	Ubiquitinâ€proteasome pathway and nuclear factorâ€̂PB activity in skeletal muscle of mildly weightâ€losing cancer patients. FASEB Journal, 2006, 20, A387.	O.5	0
178	Glycogen Synthase Kinase 3β negatively regulates myogenic differentiation. FASEB Journal, 2006, 20, A392.	0.5	0
179	Fatty acid induced NFâ€ÎºB activation and insulin resistance in skeletal muscle are chain length dependent. FASEB Journal, 2008, 22, 958.11.	0.5	0
180	GSKâ€3β suppresses myogenic differentiation through negative regulation of NFATc3. FASEB Journal, 2008, 22, 754.20.	0.5	0

#	Article	IF	CITATIONS
181	Hypoxiaâ€induced muscle atrophy involves direct and indirect signaling towards protein turnover regulation. FASEB Journal, 2012, 26, .	0.5	0
182	Differential adaptation of glycolytic and oxidative muscles to hypoxia. FASEB Journal, 2012, 26, 1086.27.	0.5	0
183	Physical and mental health profile of patients with the early-onset severe COPD phenotype: A cross-sectional analysis. Clinical Nutrition, 2022, 41, 653-660.	5.0	0