Sebastien Paul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2336017/publications.pdf Version: 2024-02-01

SERACTIEN DALL

#	Article	IF	CITATIONS
1	Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chemistry, 2011, 13, 1960.	4.6	468
2	Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chemistry, 2010, 12, 2079.	4.6	374
3	Recent Developments in the Field of Catalytic Dehydration of Glycerol to Acrolein. ACS Catalysis, 2013, 3, 1819-1834.	5.5	259
4	Towards the Sustainable Production of Acrolein by Glycerol Dehydration. ChemSusChem, 2009, 2, 719-730.	3.6	221
5	Pore size effects in high-temperature Fischer–Tropsch synthesis over supported iron catalysts. Journal of Catalysis, 2015, 328, 139-150.	3.1	151
6	Recent developments in maleic acid synthesis from bio-based chemicals. Sustainable Chemical Processes, 2015, 3, .	2.3	131
7	A long-life catalyst for glycerol dehydration to acrolein. Green Chemistry, 2010, 12, 1922.	4.6	108
8	Highly efficient catalyst for the decarbonylation of lactic acid to acetaldehyde. Green Chemistry, 2010, 12, 1910.	4.6	97
9	Support effects in high temperature Fischer-Tropsch synthesis on iron catalysts. Applied Catalysis A: General, 2014, 488, 66-77.	2.2	92
10	Catalytic Conversion of Alcohols into Carboxylic Acid Salts in Water: Scope, Recycling, and Mechanistic Insights. ChemSusChem, 2016, 9, 1413-1423.	3.6	84
11	Sodium-promoted iron catalysts prepared on different supports for high temperature Fischer–Tropsch synthesis. Applied Catalysis A: General, 2015, 502, 204-214.	2.2	78
12	Catalytic selective oxidation of isobutane to methacrylic acid on supported (NH4)3HPMo11VO40 catalysts. Journal of Catalysis, 2014, 309, 121-135.	3.1	75
13	The role of carbon atoms of supported iron carbides in Fischer–Tropsch synthesis. Catalysis Science and Technology, 2015, 5, 1433-1437.	2.1	73
14	Nanoreactors: An Efficient Tool To Control the Chain-Length Distribution in Fischer–Tropsch Synthesis. ACS Catalysis, 2016, 6, 1785-1792.	5.5	70
15	Rational design of selective metal catalysts for alcohol amination with ammonia. Nature Catalysis, 2019, 2, 773-779.	16.1	70
16	Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2 and ammoxidation over Sb-(Fe,V)-O. Applied Catalysis B: Environmental, 2013, 132-133, 170-182.	10.8	65
17	Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over intercalated vanadium phosphate oxides. RSC Advances, 2013, 3, 9942.	1.7	64
18	Evaluation and design of heteropolycompound catalysts for the selective oxidation of isobutane into methacrylic acid. Applied Catalysis A: General, 2004, 259, 141-152.	2.2	60

#	Article	IF	CITATIONS
19	Oxidative Transformations of Biosourced Alcohols Catalyzed by Earthâ€Abundant Transition Metals. ChemCatChem, 2017, 9, 2652-2660.	1.8	57
20	Steam reforming, partial oxidation and oxidative steam reforming for hydrogen production from ethanol over cerium nickel based oxyhydride catalyst. Applied Catalysis A: General, 2016, 518, 78-86.	2.2	55
21	Direct dehydration of 1,3-butanediol into butadiene over aluminosilicate catalysts. Catalysis Science and Technology, 2016, 6, 5830-5840.	2.1	49
22	Kinetic Investigation of Isobutane Selective Oxidation over a Heteropolyanion Catalyst. Industrial & Engineering Chemistry Research, 1997, 36, 3391-3399.	1.8	48
23	The Role of Steric Effects and Acidity in the Direct Synthesis of <i>iso</i> â€Paraffins from Syngas on Cobalt Zeolite Catalysts. ChemCatChem, 2016, 8, 380-389.	1.8	47
24	Room Temperature Hydrogen Production from Ethanol over CeNi _{<i>X</i>} H _{<i>Z</i>} O _{<i>Y</i>} Nanoâ€Oxyhydride Catalysts. ChemCatChem, 2013, 5, 2207-2216.	1.8	46
25	Hydrogen production from bioethanol catalyzed by NiXMg2AlOY ex-hydrotalcite catalysts. Applied Catalysis B: Environmental, 2014, 152-153, 370-382.	10.8	46
26	Acceptorless dehydrogenative coupling of alcohols catalysed by ruthenium PNP complexes: Influence of catalyst structure and of hydrogen mass transfer. Journal of Catalysis, 2016, 340, 331-343.	3.1	46
27	Ni Promotion by Fe: What Benefits for Catalytic Hydrogenation?. Catalysts, 2019, 9, 451.	1.6	46
28	Bimetallic Fe-Ni/SiO2 catalysts for furfural hydrogenation: Identification of the interplay between Fe and Ni during deposition-precipitation and thermal treatments. Catalysis Today, 2019, 334, 162-172.	2.2	46
29	Improvement of the catalytic performance of supported (NH4)3HPMo11VO40 catalysts in isobutane selective oxidation. Catalysis Today, 2013, 203, 32-39.	2.2	45
30	Advances in Base-Free Oxidation of Bio-Based Compounds on Supported Gold Catalysts. Catalysts, 2017, 7, 352.	1.6	45
31	Catalytic processes for the direct synthesis of dimethyl carbonate from CO ₂ and methanol: a review. Green Chemistry, 2022, 24, 1067-1089.	4.6	45
32	Regeneration of Silica‣upported Silicotungstic Acid as a Catalyst for the Dehydration of Glycerol. ChemSusChem, 2012, 5, 1298-1306.	3.6	37
33	Ce–Ni mixed oxide as efficient catalyst for H2 production and nanofibrous carbon material from ethanol in the presence of water. RSC Advances, 2012, 2, 9626.	1.7	36
34	Synthesis of pyruvic acid by vapour phase catalytic oxidative dehydrogenation of lactic acid. Journal of Molecular Catalysis A, 2013, 377, 123-128.	4.8	36
35	Advanced functionalized Mg 2 AlNi X H Z O Y nano-oxyhydrides ex-hydrotalcites for hydrogen production from oxidative steam reforming of ethanol. International Journal of Hydrogen Energy, 2016, 41, 15443-15452.	3.8	34
36	Steam reforming and oxidative steam reforming for hydrogen production from bioethanol over Mg2AlNiXHZOY nano-oxyhydride catalysts. International Journal of Hydrogen Energy, 2018, 43, 17643-17655.	3.8	34

#	Article	IF	CITATIONS
37	Catalytic coatings for structured supports and reactors: VOx/TiO2 catalyst coated on stainless steel in the oxidative dehydrogenation of propane. Applied Catalysis A: General, 2011, 391, 43-51.	2.2	33
38	Selective conversion of {Mo132} Keplerate ion into 4-electron reduced crown-capped Keggin derivative [Te5Mo15O57]8â^. A key intermediate to single-phase M1 multielement MoVTeO light-alkanes oxidation catalyst. Chemical Communications, 2011, 47, 6413.	2.2	32
39	Synthesis and performance of vanadium-based catalysts for the selective oxidation of light alkanes. Catalysis Today, 2017, 298, 145-157.	2.2	32
40	Direct Conversion of Glycerol to Allyl Alcohol Over Alumina‧upported Rhenium Oxide. ChemistrySelect, 2017, 2, 9864-9868.	0.7	32
41	Combining active phase and support optimization in MnO2-Au nanoflowers: Enabling high activities towards green oxidations. Journal of Colloid and Interface Science, 2018, 530, 282-291.	5.0	32
42	Biomass-derived Platform Molecules Upgrading through Catalytic Processes: Yielding Chemicals and Fuels. Journal of the Japan Petroleum Institute, 2015, 58, 257-273.	0.4	29
43	Highly loaded well dispersed stable Ni species in NiXMg2AlOY nanocomposites: Application to hydrogen production from bioethanol. Applied Catalysis B: Environmental, 2015, 166-167, 485-496.	10.8	29
44	Au-based bimetallic catalysts: how the synergy between two metals affects their catalytic activity. RSC Advances, 2019, 9, 29888-29901.	1.7	29
45	Catalytic selective oxidation of isobutane over Cs _x (NH ₄) _{3â^x} HPMo ₁₁ VO ₄₀ mixed salts. Catalysis Science and Technology, 2014, 4, 2938.	2.1	28
46	Recent Advances in Carboxylation of Furoic Acid into 2,5â€Furandicarboxylic Acid: Pathways towards Bioâ€Based Polymers. ChemSusChem, 2020, 13, 5164-5172.	3.6	28
47	Dehydration of Lactic Acid: The State of The Art. ChemBioEng Reviews, 2018, 5, 34-56.	2.6	27
48	Glycerol-Derived Renewable Polyglycerols: A Class of Versatile Chemicals of Wide Potential Application. Organic Process Research and Development, 2015, 19, 748-754.	1.3	26
49	Catalytic wall reactorCatalytic coatings of stainless steel by VOx/TiO2 and Co/SiO2 catalysts. Catalysis Today, 2007, 128, 201-207.	2.2	25
50	Alâ€doped SBAâ€15 Catalysts for Lowâ€ŧemperature Dehydration of 1,3â€Butanediol into Butadiene. ChemCatChem, 2017, 9, 258-262.	1.8	25
51	Catalytic decarboxylation of fatty acids to hydrocarbons over nonâ€noble metal catalysts: the state of the art. Journal of Chemical Technology and Biotechnology, 2019, 94, 658-669.	1.6	25
52	Liquid Phase Furfural Oxidation under Uncontrolled pH in Batch and Flow Conditions: The Role of In Situ Formed Base. Catalysts, 2020, 10, 73.	1.6	23
53	Effects of co-feeding with nitrogen-containing compounds on the performance of supported cobalt and iron catalysts in Fischer–Tropsch synthesis. Catalysis Today, 2016, 275, 84-93.	2.2	22
54	Furfural Oxidation on Gold Supported on MnO2: Influence of the Support Structure on the Catalytic Performances. Applied Sciences (Switzerland), 2018, 8, 1246.	1.3	22

#	Article	IF	CITATIONS
55	Investigation of H2 staging effects on CO conversion and product distribution for Fischer–Tropsch synthesis in a structured microchannel reactor. Chemical Engineering Journal, 2008, 136, 66-76.	6.6	21
56	Use of catalytic oxidation and dehydrogenation of hydrocarbons reactions to highlight improvement of heat transfer in catalytic metallic foams. Chemical Engineering Journal, 2011, 176-177, 49-56.	6.6	20
57	Selective aqueous phase hydrogenation of xylose to xylitol over SiO2-supported Ni and Ni-Fe catalysts: Benefits of promotion by Fe. Applied Catalysis B: Environmental, 2021, 298, 120564.	10.8	20
58	Synthesis and Structural Characterization of a New Nanoporous-like Keggin Heteropolyanion Salt: K ₃ (H ₂ O) ₄ [H ₂ SiVW ₁₁ O ₄₀](H <su Inorganic Chemistry, 2007, 46, 7371-7377.</su 	b> 2 9/sub	>O))9/sub>8 </td
59	Fully integrated high-throughput methodology for the study of Ni- and Cu-supported catalysts for glucose hydrogenation. Catalysis Today, 2019, 338, 72-80.	2.2	19
60	Novel direct amination of glycerol over heteropolyacid-based catalysts. Catalysis Science and Technology, 2016, 6, 2129-2135.	2.1	18
61	Heterogeneous Catalysis with Renewed Attention: Principles, Theories, and Concepts. Journal of Chemical Education, 2017, 94, 675-689.	1.1	18
62	Exploiting the Synergetic Behavior of PtPd Bimetallic Catalysts in the Selective Hydrogenation of Glucose and Furfural. Catalysts, 2019, 9, 132.	1.6	17
63	Ru and Ag promoted Co/Al ₂ O ₃ catalysts for the gas-phase amination of aliphatic alcohols with ammonia. Catalysis Science and Technology, 2018, 8, 5858-5874.	2.1	16
64	Direct amination of 1-octanol with NH3 over Ag-Co/Al2O3: Promoting effect of the H2 pressure on the reaction rate. Chemical Engineering Journal, 2019, 358, 1620-1630.	6.6	16
65	Alkaline-Based Catalysts for Glycerol Polymerization Reaction: A Review. Catalysts, 2020, 10, 1021.	1.6	16
66	Hybrid Conversion of <i>5</i> â€Hydroxymethylfurfural to <i>5</i> â€Aminomethylâ€ <i>2</i> â€furancarboxylic acid: Toward New Bioâ€sourced Polymers. ChemCatChem, 2021, 13, 247-259.	1.8	16
67	Ammoxidation of allyl alcohol â \in " a sustainable route to acrylonitrile. Green Chemistry, 2013, 15, 3015.	4.6	15
68	Catalytic Dehydration of Glycerol to Acrolein in a Two-Zone Fluidized Bed Reactor. Frontiers in Chemistry, 2019, 7, 127.	1.8	15
69	Lactic Acid Conversion to Acrylic Acid Over Fluoride-Substituted Hydroxyapatites. Frontiers in Chemistry, 2020, 8, 421.	1.8	15
70	Keggin-type H4PVMo11O40-based catalysts for the isobutane selective oxidation. Science China Chemistry, 2010, 53, 2039-2046.	4.2	14
71	Aerobic oxidation of 1,6-hexanediol to adipic acid over Au-based catalysts: the role of basic supports. Catalysis Science and Technology, 2020, 10, 2644-2651.	2.1	14
72	Structural Evolution under Reaction Conditions of Supported (NH4)3HPMo11VO40 Catalysts for the Selective Oxidation of Isobutane. Catalysts, 2015, 5, 460-477.	1.6	13

#	Article	IF	CITATIONS
73	Role of Crystalline Structure in Allyl Alcohol Selective Oxidation over Mo ₃ VO _{<i>x</i>} Complex Metal Oxide Catalysts. ChemCatChem, 2016, 8, 2415-2420.	1.8	13
74	Efficient deuterium labelling of alcohols in deuterated water catalyzed by ruthenium pincer complexes. Catalysis Communications, 2016, 84, 67-70.	1.6	13
75	Materials chemistry for catalysis: Coating of catalytic oxides on metallic foams. Microporous and Mesoporous Materials, 2011, 140, 81-88.	2.2	12
76	First catalytic asymmetric hydrogenation of quinoxaline-2-carboxylates. Tetrahedron, 2016, 72, 1375-1380.	1.0	12
77	Probing the core and surface composition of nanoalloy to rationalize its selectivity: Study of Ni-Fe/SiO2 catalysts for liquid-phase hydrogenation. Chem Catalysis, 2022, 2, 1686-1708.	2.9	12
78	The production of 1,3-butadiene from bio-1-butanol over Re-W/α-Al2O3 porous ceramic converter. Catalysis Communications, 2019, 128, 105714.	1.6	11
79	Coating of structured catalytic reactors by plasma assisted polymerization of tetramethyldisiloxane. Polymer Engineering and Science, 2011, 51, 940-947.	1.5	10
80	Investigating the active phase of Ca-based glycerol polymerization catalysts: On the importance of calcium glycerolate. Molecular Catalysis, 2021, 507, 111571.	1.0	10
81	Synthesis and characterization of zirconia-grafted SBA-15 nanocomposites. Journal of Materials Chemistry, 2011, 21, 8159.	6.7	9
82	High yield lactic acid selective oxidation into acetic acid over a Mo-V-Nb mixed oxide catalyst. Sustainable Chemical Processes, 2015, 3, .	2.3	9
83	Role of Promoters on the Acrolein Ammoxidation Performances of BiMoO _{<i>x</i>} . JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 431-443.	0.8	9
84	Influence of the structure of trigonal Mo-V-M3rd oxides (M3rd = -, Fe, Cu, W) on catalytic performances in selective oxidations of ethane, acrolein, and allyl alcohol. Applied Catalysis A: General, 2019, 584, 117151.	2.2	9
85	Supported Rb- or Cs-containing HPA catalysts for the selective oxidation of isobutane. Applied Catalysis A: General, 2021, 628, 118400.	2.2	9
86	Kinetic effects of chemical modifications of PMo12 catalysts for the selective oxidation of isobutane. Studies in Surface Science and Catalysis, 1999, , 283-290.	1.5	8
87	REALCAT: A New Platform to Bring Catalysis to the Lightspeed. Oil and Gas Science and Technology, 2015, 70, 455-462.	1.4	8
88	Study of the Direct CO2 Carboxylation Reaction on Supported Metal Nanoparticles. Catalysts, 2021, 11, 326.	1.6	8
89	Selective Oxidation of Isobutane to Methacrylic Acid and Methacrolein: A Critical Review. Catalysts, 2021, 11, 769.	1.6	8
90	Calcium Hydroxyapatite: A Highly Stable and Selective Solid Catalyst for Glycerol Polymerization. Catalysts, 2021, 11, 1247.	1.6	8

#	Article	IF	CITATIONS
91	From Materials Science to Catalysis: Influence of the Coating of 2D- and 3D-Inserts on the Catalytic Behaviour of VOx/TiO2 in Oxidative Dehydrogenation of Propane. Topics in Catalysis, 2011, 54, 698-707.	1.3	7
92	Glycerol Partial Oxidation over Pt/Al ₂ O ₃ Catalysts under Basic and Baseâ€Free Conditions—Effect of the Particle Size. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 63-74.	0.8	7
93	Raman Spectroscopy Applied to Monitor Furfural Liquid-Phase Oxidation Catalyzed by Supported Gold Nanoparticles. ACS Omega, 2020, 5, 14283-14290.	1.6	7
94	Ni-Fe alloying enhances the efficiency of the maltose hydrogenation process: The role of surface species and kinetic study. Applied Catalysis B: Environmental, 2022, 313, 121446.	10.8	7
95	Extending Catalyst Life in Glycerol-to-Acrolein Conversion Using Non-thermal Plasma. Frontiers in Chemistry, 2019, 7, 108.	1.8	6
96	Influence of Pd and Pt Promotion in Gold Based Bimetallic Catalysts on Selectivity Modulation in Furfural Base-Free Oxidation. Catalysts, 2021, 11, 1226.	1.6	6
97	CeNiXAl0.5HZOY nano-oxyhydrides for H2 production by oxidative dry reforming of CH4 without carbon formation. Applied Catalysis A: General, 2020, 594, 117439.	2.2	5
98	Efficient non-noble Ni–Cu based catalysts for the valorization of palmitic acid through a decarboxylation reaction. Catalysis Science and Technology, 2021, 11, 3025-3038.	2.1	5
99	Reply to the Letter to the Editor concerning the comments of M.A. Banares and M.O. Guerrero-Pérez to the article "Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2 and ammoxidation over Sb-(Fe,V)-O― Applied Catalysis B: Environmental, 2014, 148-149, 604-605.	10.8	4
100	Design of a multi-well plate for high-throughput characterization of heterogeneous catalysts by XRD, FT-IR, Raman and XRF spectroscopies. RSC Advances, 2018, 8, 40912-40920.	1.7	4
101	Design of Twoâ€Dimensional Heteropolyacid ovalent Organic Frameworks Composite Materials for Acid Catalysis. ChemCatChem, 2022, 14, .	1.8	4
102	Coating metallic foams and structured reactors by VOx/TiO2 oxidation catalyst: Application of RPECVD. Studies in Surface Science and Catalysis, 2010, , 17-24.	1.5	3
103	Isoprene Formation from Isoamyl Alcohol in Microchannels of a Converter Modified with Nanoscale Catalytic Iron–Chromium-Containing Systems. Petroleum Chemistry, 2019, 59, 405-411.	0.4	3
104	Strengthening the Connection between Science, Society and Environment to Develop Future French and European Bioeconomies: Cutting-Edge Research of VAALBIO Team at UCCS. Molecules, 2022, 27, 3889.	1.7	3
105	Control of the textural properties of cesium 12-molybdophosphate-based supports. Studies in Surface Science and Catalysis, 2000, 143, 481-488.	1.5	2
106	Oxidation of but-3-en-1,2-diol: Green access to hydroxymethionine intermediate. Catalysis Today, 2017, 279, 164-167.	2.2	2
107	Controlled synthesis of porous heteropolysalts used as catalysts supports. Studies in Surface Science and Catalysis, 2010, , 811-814.	1.5	1
108	Oxidative dehydrogenation of propane under steady-state and transient regimes over alumina-supported catalysts prepared from mixed V2W4O4â~'19 hexametalate precursors. Journal of Natural Gas Chemistry, 2010, 19, 123-133.	1.8	1

#	ARTICLE	IF	CITATIONS
109	Composition and Preparation Method of Rhenium- and Tungsten-Containing Porous Ceramic Converters Influence on the Cumene Dehydrogenation to α-Methylstyrene Process Specific Features. Petroleum Chemistry, 2022, 62, 660-671.	0.4	1
110	6. Biomass-derived molecules conversion to chemicals using heterogeneous and homogeneous catalysis. , 2015, , 141-164.		0
111	Catalytic Conversion of Alcohols into Carboxylic Acid Salts in Water: Scope, Recycling, and Mechanistic Insights. ChemSusChem, 2016, 9, 1350-1350.	3.6	0