Saura C Sahu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/233599/publications.pdf

Version: 2024-02-01

687363 752698 23 526 13 20 h-index citations g-index papers 28 28 28 944 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Genotoxicity of engineered nanomaterials found in the human environment. Current Opinion in Toxicology, 2020, 19, 68-71.	5.0	8
2	Toxicity of nanomaterials found in human environment. Toxicology Research and Application, 2017, 1, 239784731772635.	0.6	61
3	Epigenomics in toxicology and medicine. Food and Chemical Toxicology, 2017, 109, 649.	3.6	O
4	Flow cytometric evaluation of the contribution of ionic silver to genotoxic potential of nanosilver in human liver HepG2 and colon Caco2 cells. Journal of Applied Toxicology, 2016, 36, 521-531.	2.8	25
5	Contribution of ionic silver to genotoxic potential of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by the cytokinesisâ€block micronucleus assay. Journal of Applied Toxicology, 2016, 36, 532-542.	2.8	20
6	Altered global gene expression profiles in human gastrointestinal epithelial Caco2 cells exposed to nanosilver. Toxicology Reports, 2016, 3, 262-268.	3.3	6
7	Editorial: MicroRNAs in toxicology and medicine: A special issue of the journal "Food and Chemical Toxicology― Food and Chemical Toxicology, 2016, 98, 1.	3.6	1
8	Toxicogenomic responses of human liver HepG2 cells to silver nanoparticles. Journal of Applied Toxicology, 2015, 35, 1160-1168.	2.8	37
9	Editorial. Food and Chemical Toxicology, 2015, 85, 1.	3.6	1
10	Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. Journal of Applied Toxicology, 2014, 34, 1155-1166.	2.8	126
11	Comparative genotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by fluorescent microscopy of cytochalasin Bâ€blocked micronucleus formation. Journal of Applied Toxicology, 2014, 34, 1200-1208.	2.8	29
12	Comparative genotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by a flow cytometric <i>in vitro</i> micronucleus assay. Journal of Applied Toxicology, 2014, 34, 1226-1234.	2.8	30
13	Effects of usnic acid exposure on human hepatoblastoma HepG2 cells in culture. Journal of Applied Toxicology, 2012, 32, 722-730.	2.8	33
14	Interactive toxicity of usnic acid and lipopolysaccharides in human liver HepG2 cells. Journal of Applied Toxicology, 2012, 32, 739-749.	2.8	21
15	Comparative hepatotoxicity of deoxynivalenol in rat, mouse and human liver cells in culture. Journal of Applied Toxicology, 2010, 30, 566-573.	2.8	29
16	Validation of an <i>in vitro</i> model for assessment of androstenedione hepatotoxicity using the rat liver cell line cloneâ€9. Journal of Applied Toxicology, 2008, 28, 703-709.	2.8	2
17	Rat liver cloneâ€9 cells in culture as a model for screening hepatotoxic potential of foodâ€related products: hepatotoxicity of deoxynivalenol. Journal of Applied Toxicology, 2008, 28, 765-772.	2.8	35
18	A synthetic polypeptide based on human E-cadherin inhibits invasion of human intestinal and liver cell lines by Listeria monocytogenes. Journal of Medical Microbiology, 2007, 56, 1011-1016.	1.8	9

Saura C Sahu

#	ARTICLE	IF	CITATION
19	Prooxidant activity and toxicity of nordihydroguaiaretic acid in clone-9 rat hepatocyte cultures. Food and Chemical Toxicology, 2006, 44, 1751-1757.	3.6	35
20	Hepatotoxicity of androstenedione in pregnant rats. Food and Chemical Toxicology, 2005, 43, 341-344.	3.6	13
21	PRO-OXIDANT EFFECTS OF THE FLAVONOID MYRICETIN ON RAT HEPATOCYTES IN CULTURE. Toxicology Mechanisms and Methods, 2001, 11, 277-283.	2.7	4
22	Hepatocytes as a Model for Screening Food-Related Hepatotoxins and Studying Mechanisms of their Toxicity. , 0, , $105-117$.		0
23	ToxicogenomicsIn Vitro: A Powerful Tool for Screening Hepatotoxic Potential of Food-Related Products. , 0, , 211-224.		1