Steven Nutt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2335638/publications.pdf

Version: 2024-02-01

41344 29157 11,856 181 49 104 citations h-index g-index papers 185 185 185 11771 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thermo-oxidative aging and thermal cycling of PETI-340M composites. High Performance Polymers, 2022, 34, 33-43.	1.8	3
2	Surface porosity development in tool-side facesheets of honeycomb core sandwich structures during co-cure. Advanced Manufacturing: Polymer and Composites Science, 2022, 8, 43-55.	0.4	1
3	Automated planning for robotic layup of composite prepreg. Robotics and Computer-Integrated Manufacturing, 2021, 67, 102020.	9.9	29
4	Effects of post-infusion dwell on vacuum infusion of thermoset composites toughened by thermoplastic interlaminar veils. Journal of Composite Materials, 2021, 55, 1419-1433.	2.4	4
5	Depositing Aluminum onto PEKK Composites by Cold Spray. Journal of Thermal Spray Technology, 2021, 30, 385-393.	3.1	10
6	Droplet Spreading on Unidirectional Fiber Beds. Journal of Composites Science, 2021, 5, 13.	3.0	2
7	Efficient cocured scarf repair of composite structures through rheology modeling. Advanced Manufacturing: Polymer and Composites Science, 2021, 7, 15-24.	0.4	O
8	Catalytic, aerobic depolymerization of epoxy thermoset composites. Green Chemistry, 2021, 23, 6356-6360.	9.0	18
9	Effects of material and process parameters on void evolution in unidirectional prepreg during vacuum bag-only cure. Journal of Composite Materials, 2020, 54, 633-645.	2.4	15
10	Effects of resin distribution patterns on through-thickness air removal in vacuum-bag-only prepregs. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105723.	7.6	13
11	Path-dependent bond-line evolution in equilibrated core honeycomb sandwich structures. Advanced Manufacturing: Polymer and Composites Science, 2020, 6, 127-141.	0.4	O
12	Air evacuation and resin impregnation in semi-pregs: effects of feature dimensions. Advanced Manufacturing: Polymer and Composites Science, 2020, 6, 101-114.	0.4	1
13	Design and application of discontinuous resin distribution patterns for semi-pregs. Advanced Manufacturing: Polymer and Composites Science, 2020, 6, 72-85.	0.4	2
14	Effective cure cycle development via flow optimization and advanced cure environments. Advanced Manufacturing: Polymer and Composites Science, 2020, 6, 164-172.	0.4	1
15	Process robustness and defect formation mechanisms in unidirectional semipreg. Advanced Manufacturing: Polymer and Composites Science, 2020, 6, 198-211.	0.4	4
16	A structural chemistry look at composites recycling. Materials Horizons, 2020, 7, 2479-2486.	12.2	38
17	Permeability of co-cured honeycomb sandwich skins: effect of gas transport during processing. Advanced Manufacturing: Polymer and Composites Science, 2020, 6, 142-153.	0.4	1
18	In situ resin age assessment using dielectric analysis and resin cure map for efficient vacuum infusion. Advanced Manufacturing: Polymer and Composites Science, 2020, 6, 212-225.	0.4	0

#	Article	IF	CITATIONS
19	Effects of debulk temperature on air evacuation during vacuum bag-only prepreg processing. Advanced Manufacturing: Polymer and Composites Science, 2020, 6, 38-47.	0.4	1
20	Mechanisms of interâ€ply void formation during vacuum bagâ€only cure of woven prepregs. Polymer Composites, 2020, 41, 1785-1795.	4.6	7
21	Fast cure of stable semi-pregs via VBO cure. Advanced Manufacturing: Polymer and Composites Science, 2020, 6, 245-255.	0.4	2
22	Thermal oxidation of PEPA-terminated polyimide. High Performance Polymers, 2019, 31, 707-718.	1.8	8
23	Design of composite lattice materials combined with fabrication approaches. Journal of Composite Materials, 2019, 53, 393-404.	2.4	19
24	A recyclable epoxy for composite wind turbine blades. Advanced Manufacturing: Polymer and Composites Science, 2019, 5, 114-127.	0.4	10
25	Depositing Al-Based Metallic Coatings onto Polymer Substrates by Cold Spray. Journal of Thermal Spray Technology, 2019, 28, 1699-1708.	3.1	42
26	Thermoplastic prepreg with partially polymerized matrix: Material and process development for efficient part manufacturing. Composites Part A: Applied Science and Manufacturing, 2019, 119, 154-164.	7.6	20
27	Method for in situ analysis of volatiles generated during cure of composites. Composites Part A: Applied Science and Manufacturing, 2019, 123, 141-148.	7.6	4
28	Moisture absorption and hydrothermal aging of phenylethynyl-terminated pyromellitic dianhydride-type asymmetric polyimide and composites. High Performance Polymers, 2019, 31, 1020-1029.	1.8	8
29	Effects of thermal cycling on phenylethynyl-terminated PMDA-type asymmetric polyimide composites. High Performance Polymers, 2019, 31, 861-871.	1.8	2
30	Structure and properties of a phenylethynyl-terminated PMDA-type asymmetric polyimide. High Performance Polymers, 2019, 31, 261-272.	1.8	9
31	Perfluoroalkyl end-functionalized polystyrene show lower glass transition temperatures. DSC and optical transmission studies. Polymer, 2018, 138, 295-301.	3.8	2
32	<i>In situ</i> monitoring and analysis of void evolution in unidirectional prepreg. Journal of Composite Materials, 2018, 52, 2847-2858.	2.4	13
33	Peptide-Based Bioinspired Approach to Regrowing Multilayered Aprismatic Enamel. ACS Omega, 2018, 3, 2546-2557.	3.5	53
34	Compression molding of reused in-process waste – effects of material and process factors. Advanced Manufacturing: Polymer and Composites Science, 2018, 4, 1-12.	0.4	5
35	Effects of ply orientation and material on the ballistic impact behavior of multilayer plain-weave aramid fabric targets. Defence Technology, 2018, 14, 165-178.	4.2	40
36	Mechanism and Catalysis of Oxidative Degradation of Fiber-Reinforced Epoxy Composites. Topics in Catalysis, 2018, 61, 704-709.	2.8	24

#	Article	IF	Citations
37	Thermal oxidation aging of polydicyclopentadiene and composites. Polymer Composites, 2018, 39, 1742-1751.	4.6	12
38	Reuse and upcycling of thermoset prepreg scrap: Case study with out-of-autoclave carbon fiber/epoxy prepreg. Journal of Composite Materials, 2018, 52, 341-360.	2.4	21
39	Process development for phenylethynyl-terminated PMDA-type asymmetric polyimide composites. High Performance Polymers, 2018, 30, 731-741.	1.8	10
40	Processability of DDS isomersâ€cured epoxy resin: Effects of amine/epoxy ratio, humidity, and outâ€time. Polymer Engineering and Science, 2018, 58, 1530-1538.	3.1	9
41	Galvanic Corrosion and Mechanical Behavior of Fiber Metal Laminates of Metallic Glass and Carbon Fiber Composites. Advanced Engineering Materials, 2018, 20, 1700711.	3.5	34
42	Eliminating porosity via reformulation of a benzoxazine–epoxy resin transfer molding resin. Journal of Composite Materials, 2018, 52, 1481-1493.	2.4	4
43	Investigating bulk metallic glasses as ball-and-cone locators for spacecraft deployable structures. Aerospace Science and Technology, 2018, 82-83, 513-519.	4.8	13
44	Chemical treatment for recycling of amine/epoxy composites at atmospheric pressure. Polymer Degradation and Stability, 2018, 153, 307-317.	5.8	50
45	Effects of Preprocessing on Multi-Direction Properties of Aluminum Alloy Cold-Spray Deposits. Journal of Thermal Spray Technology, 2018, 27, 818-826.	3.1	26
46	Recycling Benzoxazine–Epoxy Composites via Catalytic Oxidation. ACS Sustainable Chemistry and Engineering, 2018, 6, 7227-7231.	6.7	50
47	Low Frequency Eddy Current Testing of Insulators and Composites. Journal of Nondestructive Evaluation, 2018, 37, 1.	2.4	3
48	Polymer film dewetting for fabrication of out-of-autoclave prepreg with high through-thickness permeability. Composites Part A: Applied Science and Manufacturing, 2018, 114, 86-96.	7.6	21
49	Defect reduction strategies for the manufacture of contoured laminates using vacuum BAG-only prepregs. Polymer Composites, 2017, 38, 2016-2025.	4.6	22
50	Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage. Solar Energy, 2017, 146, 1-7.	6.1	147
51	Optimization of microstructures and mechanical properties of composite oriented strand board from reused prepreg. Composite Structures, 2017, 174, 389-398.	5.8	27
52	Honeytubes: Hollow lattice truss reinforced honeycombs for crushing protection. Composite Structures, 2017, 160, 1147-1154.	5.8	58
53	All-printed strain sensors: Building blocks of the aircraft structural health monitoring system. Sensors and Actuators A: Physical, 2017, 253, 165-172.	4.1	109
54	Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray. Journal of Thermal Spray Technology, 2017, 26, 1308-1355.	3.1	186

#	Article	IF	Citations
55	Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray., 2017, 26, 1308.		1
56	Amelogenin Affects Brushite Crystal Morphology and Promotes Its Phase Transformation to Monetite. Crystal Growth and Design, 2016, 16, 4981-4990.	3.0	11
57	Enhanced fracture toughness of TiB w /Ti 3 Al composites with a layered reinforcement distribution. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2016, 670, 233-239.	5.6	18
58	Assembly of Layered Monetite-Chitosan Nanocomposite and Its Transition to Organized Hydroxyapatite. ACS Biomaterials Science and Engineering, 2016, 2, 1049-1058.	5.2	19
59	Manufacturing cost relationships for vacuum bag-only prepreg processing. Journal of Composite Materials, 2016, 50, 2305-2321.	2.4	19
60	Out-of-autoclave prepreg consolidation: Coupled air evacuation and prepreg impregnation modeling. Journal of Composite Materials, 2016, 50, 1403-1413.	2.4	18
61	Micro-strain Evolution and Toughening Mechanisms in a Trimodal Al-Based Metal Matrix Composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1196-1204.	2.2	19
62	Reuse and upcycling of aerospace prepreg scrap and waste. Reinforced Plastics, 2015, 59, 44-51.	0.1	47
63	Surface porosity during vacuum bag-only prepreg processing: Causes and mitigation strategies. Composites Part A: Applied Science and Manufacturing, 2015, 75, 1-10.	7.6	23
64	Parametric modeling, higher order FEA and experimental investigation of hat-stiffened composite panels. Composite Structures, 2015, 128, 207-220.	5.8	18
65	Two-Step SPD Processing of a Trimodal Al-Based Nano-Composite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 5877-5886.	2.2	26
66	Damage evaluation in tube spinnability test with ductile fracture criteria. International Journal of Mechanical Sciences, 2015, 100, 99-111.	6.7	45
67	Ductile-Phase Toughening in TiBw/Ti-Ti3Al Metallic-Intermetallic Laminate Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3803-3807.	2.2	36
68	Amelogenin–chitosan matrix for human enamel regrowth: effects of viscosity and supersaturation degree. Connective Tissue Research, 2014, 55, 150-154.	2.3	35
69	Radiation effects on composites for long-duration lunar habitats. Journal of Composite Materials, 2014, 48, 861-878.	2.4	11
70	In-plane compression of hollow composite pyramidal lattice sandwich columns. Journal of Composite Materials, 2014, 48, 1337-1346.	2.4	8
71	Dynamic Micro-Strain Analysis of Ultrafine-Grained Aluminum Magnesium Alloy Using Digital Image Correlation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 47-54.	2.2	18
72	Bio-inspired impact-resistant composites. Acta Biomaterialia, 2014, 10, 3997-4008.	8.3	342

#	Article	IF	Citations
73	High yield synthesis of single-layer graphene microsheets with dimensional control. Carbon, 2014, 68, 167-174.	10.3	16
74	Poly(phenylene oxide) modified cyanate resin for selfâ€healing. Polymers for Advanced Technologies, 2014, 25, 752-759.	3.2	19
75	Hypervelocity Impact Phenomenon in Bulk Metallic Glasses and Composites**. Advanced Engineering Materials, 2014, 16, 85-93.	3.5	29
76	Preparation and utility of a self-lubricating & anti-wear graphene oxide/nano-polytetrafluoroethylene hybrid. RSC Advances, 2014, 4, 19814-19823.	3.6	28
77	Synthesis of poly(urea–formaldehyde) encapsulated dibutyltin dilaurate through the self-catalysis of core materials. Polymer Bulletin, 2014, 71, 261-273.	3.3	13
78	Effects of clamping design on the ballistic impact response of soft body armor. Composite Structures, 2014, 108, 137-150.	5.8	30
79	Damping and low-velocity impact behavior of filled composite pyramidal lattice structures. Journal of Composite Materials, 2014, 48, 1789-1800.	2.4	35
80	Effects of fabric target shape and size on the V50 ballistic impact response of soft body armor. Composite Structures, 2014, 116, 661-669.	5.8	30
81	Novel polyphenylene oxide microcapsules filled with epoxy resins. Polymers for Advanced Technologies, 2013, 24, 81-89.	3.2	15
82	Inertial stabilization of flexible polymer micro-lattice materials. Journal of Materials Science, 2013, 48, 6558-6566.	3.7	15
83	Stretch–bend-hybrid hierarchical composite pyramidal lattice cores. Composite Structures, 2013, 98, 153-159.	5.8	55
84	Blends of polystyrene and poly(n-butyl methacrylate) mediated by perfluorocarbon end groups. Polymer, 2013, 54, 5790-5800.	3.8	9
85	An amelogenin–chitosan matrix promotes assembly of an enamel-like layer with a dense interface. Acta Biomaterialia, 2013, 9, 7289-7297.	8.3	113
86	A cyanate ester/microcapsule system with low cure temperature and self-healing capacity. Composites Science and Technology, 2013, 87, 111-117.	7.8	54
87	Tension–tension fatigue behavior of layer-to-layer 3-D angle-interlock woven composites. Materials Chemistry and Physics, 2013, 140, 183-190.	4.0	22
88	Modified Graphene/Polyimide Nanocomposites: Reinforcing and Tribological Effects. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4878-4891.	8.0	147
89	Influence of hot isostatic pressing on microstructure and mechanical behaviour of nanostructured Al alloy. Powder Metallurgy, 2013, 56, 276-287.	1.7	8
90	Prepreg age monitoring via differential scanning calorimetry. Journal of Reinforced Plastics and Composites, 2012, 31, 295-302.	3.1	21

#	Article	IF	CITATIONS
91	Multifunctional superhydrophobic composite films from a synergistic self-organization process. Journal of Materials Chemistry, 2012, 22, 109-114.	6.7	30
92	Vertical nonpolar growth templates for light emitting diodes formed with GaN nanosheets. Applied Physics Letters, 2012, 100, 033119.	3.3	51
93	InGaN/GaN Multiple Quantum Wells Grown on Nonpolar Facets of Vertical GaN Nanorod Arrays. Nano Letters, 2012, 12, 3257-3262.	9.1	141
94	Scaling of membrane-type locally resonant acoustic metamaterial arrays. Journal of the Acoustical Society of America, 2012, 132, 2784-2792.	1.1	104
95	Influence of Process Parameters on the Mechanical Behavior of an Ultrafine-Grained Al Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 505-519.	2.2	57
96	Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses. Journal of Applied Physics, 2011, 110, .	2.5	130
97	Membrane-type metamaterials: Transmission loss of multi-celled arrays. Journal of Applied Physics, 2011, 109, .	2.5	147
98	Pyramidal lattice sandwich structures with hollow composite trusses. Composite Structures, 2011, 93, 3104-3111.	5.8	68
99	Vitreous carbon micro-lattice structures. Carbon, 2011, 49, 1025-1032.	10.3	50
100	An analytical study of sound transmission through unbounded panels of functionally gradedmaterials. Journal of Sound and Vibration, 2011, 330, 1153-1165.	3.9	30
100		3.9	30
	gradedmaterials. Journal of Sound and Vibration, 2011, 330, 1153-1165. Response to "Comments on An analytical study of sound transmission through unbounded panels of		
101	gradedmaterials. Journal of Sound and Vibration, 2011, 330, 1153-1165. Response to "Comments on An analytical study of sound transmission through unbounded panels of functionally graded materialsâ€. Journal of Sound and Vibration, 2011, 330, 4947-4948.		0
101	gradedmaterials. Journal of Sound and Vibration, 2011, 330, 1153-1165. Response to "Comments on An analytical study of sound transmission through unbounded panels of functionally graded materials†Journal of Sound and Vibration, 2011, 330, 4947-4948. InGaN/GaN nanorod and nanosheet arrays for InGaN-based LEDs. , 2011, , . Enhancing specific strength and stiffness of phenolic microsphere syntactic foams through carbon	3.9	0
101 102 103	gradedmaterials. Journal of Sound and Vibration, 2011, 330, 1153-1165. Response to "Comments on An analytical study of sound transmission through unbounded panels of functionally graded materials†Journal of Sound and Vibration, 2011, 330, 4947-4948. InGaN/GaN nanorod and nanosheet arrays for InGaN-based LEDs. , 2011, , . Enhancing specific strength and stiffness of phenolic microsphere syntactic foams through carbon fiber reinforcement. Polymer Composites, 2010, 31, 256-262. Wave speeds of honeycomb sandwich structures: An experimental approach. Applied Acoustics, 2010,	3.9 4.6	0 0 10
101 102 103	gradedmaterials. Journal of Sound and Vibration, 2011, 330, 1153-1165. Response to "Comments on An analytical study of sound transmission through unbounded panels of functionally graded materials†Journal of Sound and Vibration, 2011, 330, 4947-4948. InGaN/GaN nanorod and nanosheet arrays for InGaN-based LEDs., 2011, ,. Enhancing specific strength and stiffness of phenolic microsphere syntactic foams through carbon fiber reinforcement. Polymer Composites, 2010, 31, 256-262. Wave speeds of honeycomb sandwich structures: An experimental approach. Applied Acoustics, 2010, 71, 115-119. Strain Mapping of Al–Mg Alloy with Multi-scale Grain Structure using Digital Image Correlation	3.9 4.6 3.3	0 0 10 16
101 102 103 104	gradedmaterials. Journal of Sound and Vibration, 2011, 330, 1153-1165. Response to "Comments on An analytical study of sound transmission through unbounded panels of functionally graded materials†Journal of Sound and Vibration, 2011, 330, 4947-4948. InGaN/GaN nanorod and nanosheet arrays for InGaN-based LEDs., 2011, , . Enhancing specific strength and stiffness of phenolic microsphere syntactic foams through carbon fiber reinforcement. Polymer Composites, 2010, 31, 256-262. Wave speeds of honeycomb sandwich structures: An experimental approach. Applied Acoustics, 2010, 71, 115-119. Strain Mapping of Al–Mg Alloy with Multi-scale Grain Structure using Digital Image Correlation Method. Experimental Mechanics, 2010, 50, 117-123. Effect of grain size on strain rate sensitivity of cryomilled Al–Mg alloy. Journal of Materials Science,	3.9 4.6 3.3 2.0	0 0 10 16

#	Article	IF	Citations
109	Characterization Methodology of Thermoset Resins for the Processing of Composite Materials — Case Study: CYCOM 890RTM Epoxy Resin. Journal of Composite Materials, 2010, 44, 1397-1415.	2.4	103
110	Diffusivity and Climatic Simulation of Hybrid Foams. Journal of Cellular Plastics, 2010, 46, 461-478.	2.4	11
111	Glass transition temperature changes of melt-blended polymer nanocomposites containing finely dispersed ZnO quantum dots. Soft Matter, 2010, 6, 4482.	2.7	17
112	Single-layer graphene nanosheets with controlled grafting of polymer chains. Journal of Materials Chemistry, 2010, 20, 1982.	6.7	446
113	Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials. Journal of Applied Physics, 2010, 108, .	2.5	188
114	Small-scale transmission loss facility for flat lightweight panels. Noise Control Engineering Journal, 2009, 57, 536.	0.3	7
115	Measurements of loss factors of honeycomb sandwich structures. Noise Control Engineering Journal, 2009, 57, 27.	0.3	1
116	The effects of softâ€segment molecular weight and organic modifier on properties of organicâ€modified MMTâ€PU nanocomposites. Journal of Applied Polymer Science, 2009, 114, 1025-1032.	2.6	12
117	Temperature Dependence of Resin Flow in a Resin Film Infusion (RFI) Process by Ultrasound Imaging. Applied Composite Materials, 2009, 16, 183-196.	2.5	9
118	Optimal design of acoustical sandwich panels with a genetic algorithm. Applied Acoustics, 2009, 70, 416-425.	3.3	41
119	Sound transmission prediction by 3-D elasticity theory. Applied Acoustics, 2009, 70, 730-736.	3.3	21
120	Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Journal of Materials Chemistry, 2009, 19, 7098.	6.7	1,210
121	Basalt fiber–epoxy laminates with functionalized multi-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2009, 40, 1082-1089.	7.6	66
122	Dynamic observations of deformation in an ultrafine-grained Al–Mg alloy with bimodal grain structure. Journal of Materials Science, 2008, 43, 7403-7408.	3.7	34
123	Synthesis and characterization of organically modified attapulgite/polyurethane nanocomposites. Journal of Applied Polymer Science, 2008, 109, 2562-2570.	2.6	49
124	The influence of functionalized MWCNT reinforcement on the thermomechanical properties and morphology of epoxy nanocomposites. Composites Science and Technology, 2008, 68, 2535-2542.	7.8	37
125	Consistent higher-order free vibration analysis of composite sandwich plates. Composite Structures, 2008, 82, 609-621.	5.8	29
126	Shear behavior of polymer micro-scale truss structures formed from self-propagating polymer waveguides. Acta Materialia, 2008, 56, 1209-1218.	7.9	26

#	Article	IF	CITATIONS
127	Micro-scale truss structures with three-fold and six-fold symmetry formed from self-propagating polymer waveguides. Acta Materialia, 2008, 56, 2540-2548.	7.9	66
128	Hybrid Network Structure and Mechanical Properties of Rodlike Silicate/Cyanate Ester Nanocomposites. Macromolecules, 2008, 41, 9245-9258.	4.8	109
129	Synthesis and Characterization of a Single-Component Thermally Remendable Polymer Network: Staudinger and Stille Revisited. Macromolecules, 2008, 41, 5203-5209.	4.8	193
130	Mechanical Behavior of Hybrid Composite Phenolic Foam. Journal of Cellular Plastics, 2008, 44, 15-36.	2.4	39
131	Thermal stability in nanostructured Al-5083/SiC _p composites fabricated by cryomilling. Powder Metallurgy, 2007, 50, 307-312.	1.7	14
132	Flammability properties and mechanical performance of epoxy modified phenolic foams. Journal of Applied Polymer Science, 2007, 104, 1399-1407.	2.6	92
133	Compression behavior of micro-scale truss structures formed from self-propagating polymer waveguides. Acta Materialia, 2007, 55, 6724-6733.	7.9	92
134	Rheology of foaming aluminum melts. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 458, 108-115.	5.6	21
135	Effect of degassing temperature on the microstructure of a nanocrystalline Al–Mg alloy. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 463, 61-66.	5.6	20
136	Cellulose micro/nanocrystals reinforced polyurethane. Journal of Materials Research, 2006, 21, 870-881.	2.6	211
137	3D long fiber-reinforced syntactic foam based on hollow polymeric microspheres. Composites Part A: Applied Science and Manufacturing, 2006, 37, 488-496.	7.6	41
138	Improving the dispersion and flexural strength of multiwalled carbon nanotubes–stiff epoxy composites through β-hydroxyester surface functionalization coupled with the anionic homopolymerization of the epoxy matrix. European Polymer Journal, 2006, 42, 2765-2772.	5.4	55
139	Rheological study of the curing kinetics of epoxy–phenol novolac resin. Journal of Applied Polymer Science, 2006, 102, 4430-4439.	2.6	38
140	Barrier properties for short-fiber-reinforced epoxy foams. Journal of Applied Polymer Science, 2006, 102, 3266-3272.	2.6	7
141	Assessment of sandwich models for the prediction of sound transmission loss in unidirectional sandwich panels. Applied Acoustics, 2005, 66, 245-262.	3.3	67
142	Rod-Like Silicate-Epoxy Nanocomposites. Macromolecular Rapid Communications, 2005, 26, 1445-1450.	3.9	80
143	Accurate predictions of bending deflections for soft-core sandwich beams subject to concentrated loads. Composite Structures, 2004, 64, 115-122.	5.8	8
144	Higher-order free vibrations of sandwich beams with a locally damaged core. International Journal of Solids and Structures, 2004, 41, 6529-6547.	2.7	14

#	Article	IF	Citations
145	Direct observation and measurement of fiber architecture in short fiber-polymer composite foam through micro-CT imaging. Composites Science and Technology, 2004, 64, 2113-2120.	7.8	148
146	Consistent Higher-Order Dynamic Equations for Soft-Core Sandwich Beams. AIAA Journal, 2004, 42, 374-382.	2.6	40
147	Enthalpy Relaxation of Layered Silicate-Epoxy Nanocomposites. Macromolecular Chemistry and Physics, 2003, 204, 1832-1841.	2.2	62
148	Cold-crystallization kinetics of syndiotactic polystyrene. Journal of Applied Polymer Science, 2003, 89, 3464-3470.	2.6	12
149	Experimental and analytical study of nonlinear bending response of sandwich beams. Composite Structures, 2003, 60, 219-229.	5.8	68
150	Cellular polymer composites based on bi-component fibers. Composites Science and Technology, 2003, 63, 1403-1410.	7.8	7
151	New Thermally Remendable Highly Cross-Linked Polymeric Materials. Macromolecules, 2003, 36, 1802-1807.	4.8	639
152	Restricted Relaxation in Polymer Nanocomposites near the Glass Transition. Macromolecules, 2003, 36, 4010-4016.	4.8	221
153	Mechanical characterization of short fiber reinforced phenolic foam. Composites Part A: Applied Science and Manufacturing, 2003, 34, 899-906.	7.6	143
154	Synthesis of composite foam from thermoplastic microspheres and 3D long fibers. Composites Part A: Applied Science and Manufacturing, 2003, 34, 755-763.	7.6	18
155	Enhanced peel resistance of fiber reinforced phenolic foams. Composites Part A: Applied Science and Manufacturing, 2003, 34, 941-948.	7.6	76
156	Fiber-reinforced composite foam from expandable PVC microspheres. Composites Part A: Applied Science and Manufacturing, 2003, 34, 1245-1253.	7.6	36
157	A Thermally Re-mendable Cross-Linked Polymeric Material. Science, 2002, 295, 1698-1702.	12.6	2,182
158	Boundary condition effects in free vibrations of higher-order soft sandwich beams. AIAA Journal, 2002, 40, 1220-1227.	2.6	8
159	Fiber Coatings for SiC-Fiber-Reinforced BMAS Glass-Ceramic Composites. Journal of the American Ceramic Society, 1997, 80, 264-266.	3.8	18
160	An investigation of creep and substructure formation in 2124 Al. Acta Materialia, 1997, 45, 2607-2620.	7.9	80
161	Failure characteristics in carbon/epoxy composite tows. Composites Part A: Applied Science and Manufacturing, 1996, 27, 1183-1194.	7.6	16
162	Oxidation of BN-Coated SiC Fibers in Ceramic Matrix Composites. Journal of the American Ceramic Society, 1996, 79, 539-543.	3.8	70

#	Article	IF	CITATIONS
163	High-Temperature Tensile Behavior of a Boron Nitride-Coated Silicon Carbide-Fiber Glass-Ceramic Composite. Journal of the American Ceramic Society, 1996, 79, 1521-1529.	3.8	48
164	Flexural Creep of Coated SiC-Fiber-Reinforced Glass-Ceramic Composites. Journal of the American Ceramic Society, 1995, 78, 1233-1239.	3.8	18
165	Stress-Induced Phase Transformation in Single Crystal Titanium Carbide. Journal of the American Ceramic Society, 1995, 78, 1537-1545.	3.8	8
166	Lattice mismatch measurement of epitaxial βâ€SiC on αâ€SiC substrates. Journal of Applied Physics, 1995, 77, 3138-3145.	2.5	9
167	Heteroepitaxial growth of \hat{l}^2 -SiC films on TiC substrates: Interface structures and defects. Journal of Materials Research, 1994, 9, 2086-2095.	2.6	25
168	Terrace growth and polytype development in epitaxial $\langle i \rangle \hat{l}^2 \langle i \rangle$ -SiC films on $\langle i \rangle \hat{l} \pm \langle i \rangle$ -SiC (6H and 15R) substrates. Journal of Materials Research, 1994, 9, 940-954.	2.6	82
169	Interface structures of epitaxial Î ² -SiC on α-SiC substrates. Journal of Crystal Growth, 1994, 137, 175-180.	1.5	10
170	Interfacial Microstructure and Chemistry of SiC/BN Dual-Coated Nicalon-Fiber-Reinforced Glass-Ceramic Matrix Composites. Journal of the American Ceramic Society, 1994, 77, 1329-1339.	3.8	64
171	Dynamic Compaction of Al2O3-ZrO2 Compositions. Journal of the American Ceramic Society, 1994, 77, 1605-1612.	3.8	9
172	Defect structures in single crystal TiC. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1993, 68, 325-348.	0.6	34
173	Reduced-pressure MOCVD of highly crystalline BaTiO ₃ thin films. Journal of Materials Research, 1992, 7, 542-545.	2.6	34
174	SiC-Whisker-Reinforced Glass-Ceramic Composites: Interfaces and Properties. Journal of the American Ceramic Society, 1992, 75, 1205-1216.	3.8	32
175	Atmospheric Effects on Compressive Creep of SiC-Whisker-Reinforced Alumina. Journal of the American Ceramic Society, 1991, 74, 1240-1247.	3.8	39
176	Microstructure and Growth Model for Rice-Hull-Derived SiC Whiskers. Journal of the American Ceramic Society, 1988, 71, 149-156.	3.8	113
177	Interface structures in betaâ€silicon carbide thin films. Applied Physics Letters, 1987, 50, 203-205.	3.3	83
178	Highâ€resolution electron microscopy study of xâ€ray multilayer structures. Journal of Applied Physics, 1987, 61, 1422-1428.	2.5	200
179	Transmission electron microscopy of process-induced defects in \hat{I}^2 -SiC thin films. Journal of Materials Research, 1986, 1, 811-819.	2.6	80
180	Defects in Silicon Carbide Whiskers. Journal of the American Ceramic Society, 1984, 67, 428-431.	3.8	123

#	Article	IF	CITATIONS
181	Experimental validation of co-cure process of honeycomb sandwich structures simulation: adhesive fillet shape and bond-line porosity. Advanced Manufacturing: Polymer and Composites Science, 0, , 1-14.	0.4	1