

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2334612/publications.pdf Version: 2024-02-01

YLAOVUUL

#	Article	IF	CITATIONS
1	The NAC Protein from Tamarix hispida, ThNAC7, Confers Salt and Osmotic Stress Tolerance by Increasing Reactive Oxygen Species Scavenging Capability. Plants, 2019, 8, 221.	3.5	26
2	A <i>bHLH</i> gene from <i>Tamarix hispida</i> improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation. Tree Physiology, 2016, 36, tpv139.	3.1	40
3	The regulatory network of ThbZIP1 in response to abscisic acid treatment. Frontiers in Plant Science, 2015, 6, 25.	3.6	8
4	<i>Arabidopsis</i> Atb <scp>HLH</scp> 112 regulates the expression of genes involved in abiotic stress tolerance by binding to their Eâ€box and <scp>GCG</scp> â€box motifs. New Phytologist, 2015, 207, 692-709.	7.3	189
5	Elucidation of the Specific Formation of Homo- and Heterodimeric Forms of ThbZIP1 and Its Role in Stress. International Journal of Molecular Sciences, 2014, 15, 10005-10017.	4.1	5
6	A Transient Transformation System for the Functional Characterization of Genes Involved in Stress Response. Plant Molecular Biology Reporter, 2014, 32, 732-739.	1.8	58
7	A novel method to identify the DNA motifs recognized by a defined transcription factor. Plant Molecular Biology, 2014, 86, 367-380.	3.9	30