
## William Thomas Self

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2334130/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | <scp>d</scp> -Proline Reductase Underlies Proline-Dependent Growth of Clostridioides difficile.<br>Journal of Bacteriology, 2022, 204, .                                                                                            | 2.2  | 6         |
| 2  | Exploring the selenium-over-sulfur substrate specificity and kinetics of a bacterial selenocysteine lyase. Biochimie, 2021, 182, 166-176.                                                                                           | 2.6  | 3         |
| 3  | The Rv2633c protein of Mycobacterium tuberculosis is a non-heme di-iron catalase with a possible role<br>in defenses against oxidative stress. Journal of Biological Chemistry, 2018, 293, 1590-1595.                               | 3.4  | 19        |
| 4  | Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications.<br>Antioxidants, 2018, 7, 97.                                                                                                    | 5.1  | 289       |
| 5  | Antioxidant Inorganic Nanoparticles and Their Potential Applications in Biomedicine. , 2018, , 159-169.                                                                                                                             |      | 15        |
| 6  | Characterizing the phosphatase mimetic activity of cerium oxide nanoparticles and distinguishing its active site from that for catalase mimetic activity using anionic inhibitors. Environmental Science: Nano, 2017, 4, 1742-1749. | 4.3  | 41        |
| 7  | Using CRISPR-Cas9-mediated genome editing to generate C. difficile mutants defective in selenoproteins synthesis. Scientific Reports, 2017, 7, 14672.                                                                               | 3.3  | 79        |
| 8  | Redox-Sensitive Cerium Oxide Nanoparticles Protect Human Keratinocytes from Oxidative Stress<br>Induced by Glutathione Depletion. Langmuir, 2016, 32, 12202-12211.                                                                  | 3.5  | 81        |
| 9  | Hypochlorite scavenging activity of cerium oxide nanoparticles. RSC Advances, 2016, 6, 62911-62915.                                                                                                                                 | 3.6  | 6         |
| 10 | Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environmental Science: Nano, 2015, 2, 33-53.                                                                                                        | 4.3  | 341       |
| 11 | Therapeutic potential of nanoceria in regenerative medicine. MRS Bulletin, 2014, 39, 976-983.                                                                                                                                       | 3.5  | 42        |
| 12 | Behavior of nanoceria in biologically-relevant environments. Environmental Science: Nano, 2014, 1,<br>516-532.                                                                                                                      | 4.3  | 94        |
| 13 | Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death. Cell Death and Differentiation, 2014, 21, 1622-1632.                                                                     | 11.2 | 166       |
| 14 | Bioâ€distribution and <i>in vivo</i> antioxidant effects of cerium oxide nanoparticles in mice.<br>Environmental Toxicology, 2013, 28, 107-118.                                                                                     | 4.0  | 249       |
| 15 | Cerium oxide nanoparticles accelerate the decay of peroxynitrite (ONOOâ^). Drug Delivery and Translational Research, 2013, 3, 375-379.                                                                                              | 5.8  | 85        |
| 16 | Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine, 2013, 8, 1483-1508.                                                                                                                           | 3.3  | 424       |
| 17 | Oxygenated Functional Group Density on Graphene Oxide: Its Effect on Cell Toxicity. Particle and Particle Systems Characterization, 2013, 30, 148-157.                                                                              | 2.3  | 173       |
| 18 | Cellular Interaction and Toxicity Depend on Physicochemical Properties and Surface Modification of Redox-Active Nanomaterials, ACS Nano, 2013, 7, 4855-4868.                                                                        | 14.6 | 179       |

WILLIAM THOMAS SELF

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Xanthine Dehydrogenase (Se-Dependent). , 2013, , 2335-2336.                                                                                                                           |      | 0         |
| 20 | Proline-Dependent Regulation of Clostridium difficile Stickland Metabolism. Journal of Bacteriology, 2013, 195, 844-854.                                                              | 2.2  | 185       |
| 21 | Immunomodulation and T Helper TH1/TH2 Response Polarization by CeO2 and TiO2 Nanoparticles. PLoS ONE, 2013, 8, e62816.                                                                | 2.5  | 80        |
| 22 | Exposure to Silver Nanoparticles Inhibits Selenoprotein Synthesis and the Activity of Thioredoxin Reductase. Environmental Health Perspectives, 2012, 120, 56-61.                     | 6.0  | 73        |
| 23 | Cerium oxide nanoparticles scavenge nitric oxide radical (˙NO). Chemical Communications, 2012, 48,<br>4896.                                                                           | 4.1  | 222       |
| 24 | A facile synthesis of PLGA encapsulated cerium oxide nanoparticles: release kinetics and biological activity. Nanoscale, 2012, 4, 2597.                                               | 5.6  | 48        |
| 25 | The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in in intracellular environments. Biomaterials, 2012, 33, 7746-7755.                     | 11.4 | 247       |
| 26 | Up conversion luminescence of Yb3+–Er3+ codoped CeO2 nanocrystals with imaging applications.<br>Journal of Luminescence, 2012, 132, 743-749.                                          | 3.1  | 59        |
| 27 | A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials, 2011, 32, 6745-6753.                                  | 11.4 | 285       |
| 28 | A Selenium-Dependent Xanthine Dehydrogenase Triggers Biofilm Proliferation in <i>Enterococcus faecalis</i> through Oxidant Production. Journal of Bacteriology, 2011, 193, 1643-1652. | 2.2  | 42        |
| 29 | Multicolored redox active upconverter cerium oxide nanoparticle for bio-imaging and therapeutics.<br>Chemical Communications, 2010, 46, 6915.                                         | 4.1  | 118       |
| 30 | Comparison of the anaerobic microbiota of deep-water <i>Geodia</i> spp. and sandy sediments in the Straits of Florida. ISME Journal, 2010, 4, 686-699.                                | 9.8  | 35        |
| 31 | Tuning Hydrated Nanoceria Surfaces: Experimental/Theoretical Investigations of Ion Exchange and<br>Implications in Organic and Inorganic Interactions. Langmuir, 2010, 26, 7188-7198. | 3.5  | 35        |
| 32 | Redox-active radical scavenging nanomaterials. Chemical Society Reviews, 2010, 39, 4422.                                                                                              | 38.1 | 458       |
| 33 | Specific and Nonspecific Incorporation of Selenium into Macromolecules. , 2010, , 121-148.                                                                                            |      | 3         |
| 34 | Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles.<br>Molecular BioSystems, 2010, 6, 1813.                                                | 2.9  | 144       |
| 35 | Nanoceria exhibit redox state-dependent catalase mimetic activity. Chemical Communications, 2010, 46, 2736.                                                                           | 4.1  | 912       |
| 36 | Targeting selenium metabolism and selenoproteins: Novel avenues for drug discovery. Metallomics, 2010, 2, 112-116.                                                                    | 2.4  | 42        |

WILLIAM THOMAS SELF

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Inhibition of Selenium Metabolism in the Oral Pathogen <i>Treponema denticola</i> . Journal of Bacteriology, 2009, 191, 4035-4040.                                                    | 2.2  | 39        |
| 38 | Exposure to monomethylarsonous acid (MMAIII) leads to altered selenoprotein synthesis in a primary human lung cell model. Toxicology and Applied Pharmacology, 2009, 239, 130-136.    | 2.8  | 20        |
| 39 | Auranofin disrupts selenium metabolism in Clostridium difficile by forming a stable Au–Se adduct.<br>Journal of Biological Inorganic Chemistry, 2009, 14, 507-519.                    | 2.6  | 75        |
| 40 | Protonated Nanoparticle Surface Governing Ligand Tethering and Cellular Targeting. ACS Nano, 2009, 3, 1203-1211.                                                                      | 14.6 | 82        |
| 41 | PEGylated Nanoceria as Radical Scavenger with Tunable Redox Chemistry. Journal of the American Chemical Society, 2009, 131, 14144-14145.                                              | 13.7 | 302       |
| 42 | Exposure to Titanium Dioxide Nanomaterials Provokes Inflammation of an <i>in Vitro</i> Human<br>Immune Construct. ACS Nano, 2009, 3, 2523-2532.                                       | 14.6 | 152       |
| 43 | The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials, 2008, 29, 2705-2709.                                                                           | 11.4 | 813       |
| 44 | Arsenic trioxide and auranofin inhibit selenoprotein synthesis: implications for chemotherapy for acute promyelocytic leukaemia. British Journal of Pharmacology, 2008, 154, 940-948. | 5.4  | 55        |
| 45 | High affinity selenium uptake in a keratinocyte model. FEBS Letters, 2008, 582, 299-304.                                                                                              | 2.8  | 33        |
| 46 | Fenton-Like Reaction Catalyzed by the Rare Earth Inner Transition Metal Cerium. Environmental<br>Science & Technology, 2008, 42, 5014-5019.                                           | 10.0 | 306       |
| 47 | Orphan SelD proteins and selenium-dependent molybdenum hydroxylases. Biology Direct, 2008, 3, 4.                                                                                      | 4.6  | 40        |
| 48 | Selenotrisulfide Derivatives of Alpha-Lipoic Acid. Oxidative Stress and Disease, 2008, , .                                                                                            | 0.3  | 0         |
| 49 | Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles.<br>Chemical Communications, 2007, , 1056.                                                | 4.1  | 1,009     |
| 50 | Impact of Trivalent Arsenicals on Selenoprotein Synthesis. Environmental Health Perspectives, 2007, 115, 346-353.                                                                     | 6.0  | 50        |
| 51 | Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential.<br>Biomaterials, 2007, 28, 4600-4607.                                           | 11.4 | 876       |
| 52 | Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803. BMC Biotechnology, 2007, 7, 25.                   | 3.3  | 56        |
| 53 | Bioavailability of selenium from the selenotrisulphide derivative of lipoic acid. Photodermatology<br>Photoimmunology and Photomedicine, 2006, 22, 315-323.                           | 1.5  | 7         |
| 54 | Analysis of Proline Reduction in the Nosocomial Pathogen Clostridium difficile. Journal of<br>Bacteriology, 2006, 188, 8487-8495.                                                     | 2.2  | 145       |

WILLIAM THOMAS SELF

| #  | Article                                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Cloning and Heterologous Expression of a Methanococcus vannielii Gene Encoding a<br>Selenium-Binding Protein. IUBMB Life, 2004, 56, 501-507.                                                                                                                                                                 | 3.4 | 12        |
| 56 | Expression and Regulation of a Silent Operon, hyf , Coding for Hydrogenase 4 Isoenzyme in Escherichia coli. Journal of Bacteriology, 2004, 186, 580-587.                                                                                                                                                     | 2.2 | 89        |
| 57 | Cofactor Determination and Spectroscopic Characterization of the Selenium-Dependent Purine<br>Hydroxylase fromClostridium purinolyticum. Biochemistry, 2003, 42, 11382-11390.                                                                                                                                | 2.5 | 28        |
| 58 | Regulation of Purine Hydroxylase and Xanthine Dehydrogenase from Clostridium purinolyticum in<br>Response to Purines, Selenium, and Molybdenum. Journal of Bacteriology, 2002, 184, 2039-2044.                                                                                                               | 2.2 | 28        |
| 59 | Molybdate transport. Research in Microbiology, 2001, 152, 311-321.                                                                                                                                                                                                                                           | 2.1 | 129       |
| 60 | Transcriptional regulation of the moe (molybdate metabolism) operon of Escherichia coli. Archives of<br>Microbiology, 2001, 175, 178-188.                                                                                                                                                                    | 2.2 | 21        |
| 61 | N-terminal truncations in the FhlA protein result in formate- and MoeA-independent expression of the hyc (formate hydrogenlyase) operon of Escherichia coli. Microbiology (United Kingdom), 2001, 147, 3093-3104.                                                                                            | 1.8 | 31        |
| 62 | Isolation and characterization of mutated FhlA proteins which activate transcription of<br>thehycoperon (formate hydrogenlyase) ofEscherichia coliin the absence of molybdate. FEMS<br>Microbiology Letters, 2000, 184, 47-52.                                                                               | 1.8 | 26        |
| 63 | Selenium-dependent metabolism of purines: A selenium-dependent purine hydroxylase and xanthine dehydrogenase were purified from Clostridium purinolyticum and characterized. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7208-7213.                           | 7.1 | 50        |
| 64 | Synthesis and characterization of selenotrisulfide-derivatives of lipoic acid and lipoamide.<br>Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12481-12486.                                                                                                      | 7.1 | 37        |
| 65 | Isolation and characterization of mutated FhIA proteins which activate transcription of the hyc<br>operon (formate hydrogenlyase) of Escherichia coli in the absence of molybdate. FEMS Microbiology<br>Letters, 2000, 184, 47-52.                                                                           | 1.8 | 3         |
| 66 | An Analysis of the Binding of Repressor Protein ModE to modABCD (Molybdate Transport)<br>Operator/Promoter DNA of Escherichia coli. Journal of Biological Chemistry, 1999, 274, 24308-24315.                                                                                                                 | 3.4 | 38        |
| 67 | Transcriptional regulation of molybdoenzyme synthesis in Escherichia coli in response to<br>molybdenum: ModE-molybdate, a repressor of the modABCD (molybdate transport) operon is a<br>secondary transcriptional activator for the hyc and nar operons. Microbiology (United Kingdom),<br>1999. 145. 41-55. | 1.8 | 61        |
| 68 | Molybdate-dependent transcription ofhycandnaroperons ofEscherichia colirequires MoeA protein and ModE-molybdate. FEMS Microbiology Letters, 1998, 169, 111-116.                                                                                                                                              | 1.8 | 26        |
| 69 | Molybdate-dependent transcription of hyc and nar operons of Escherichia coli requires MoeA protein and ModE-molybdate. FEMS Microbiology Letters, 1998, 169, 111-116.                                                                                                                                        | 1.8 | 6         |