
Robert P Fisher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2334059/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Protein phosphatases in the RNAPII transcription cycle: erasers, sculptors, gatekeepers, and potential drug targets. Genes and Development, 2021, 35, 658-676.	5.9	29
2	New connections between ubiquitylation and methylation in the co-transcriptional histone modification network. Current Genetics, 2021, 67, 695-705.	1.7	8
3	A cell cycle regulator branches out. Science, 2021, 374, 263-264.	12.6	2
4	Distinct Cdk9-phosphatase switches act at the beginning and end of elongation by RNA polymerase II. Nature Communications, 2020, 11, 4338.	12.8	37
5	Dissecting the Pol II transcription cycle and derailing cancer with CDK inhibitors. Nature Chemical Biology, 2020, 16, 716-724.	8.0	56
6	Cdk9 and H2Bub1 signal to Clr6-CII/Rpd3S to suppress aberrant antisense transcription. Nucleic Acids Research, 2020, 48, 7154-7168.	14.5	16
7	Splice or Die: When MYC Is Driving, Transcription Needs NUAK1 to Avoid Fatal Pileups. Molecular Cell, 2020, 77, 1157-1158.	9.7	1
8	Histone H2B Ubiquitylation Regulates Histone Gene Expression by Suppressing Antisense Transcription in Fission Yeast. Genetics, 2019, 213, 161-172.	2.9	11
9	Cdk7: a kinase at the core of transcription and in the crosshairs of cancer drug discovery. Transcription, 2019, 10, 47-56.	3.1	93
10	Taking Aim at Glycolysis with CDK8 Inhibitors. Trends in Endocrinology and Metabolism, 2018, 29, 281-282.	7.1	5
11	Cdk9 regulates a promoter-proximal checkpoint to modulate RNA polymerase II elongation rate in fission yeast. Nature Communications, 2018, 9, 543.	12.8	66
12	A Cdk9–PP1 switch regulates the elongation–termination transition of RNA polymerase II. Nature, 2018, 558, 460-464.	27.8	105
13	CDK regulation of transcription by RNAP II: Not over â€ [~] til it's over?. Transcription, 2017, 8, 81-90.	3.1	10
14	Activation of the p53 Transcriptional Program Sensitizes Cancer Cells to Cdk7 Inhibitors. Cell Reports, 2017, 21, 467-481.	6.4	65
15	Glucocorticoid-induced phosphorylation by CDK9 modulates the coactivator functions of transcriptional cofactor GRIP1 in macrophages. Nature Communications, 2017, 8, 1739.	12.8	28
16	Neonatal expression of RNA-binding protein IGF2BP3 regulates the human fetal-adult megakaryocyte transition. Journal of Clinical Investigation, 2017, 127, 2365-2377.	8.2	39
17	Getting to S: CDK functions and targets on the path to cell-cycle commitment. F1000Research, 2016, 5, 2374.	1.6	37
18	P-TEFb regulation of transcription termination factor Xrn2 revealed by a chemical genetic screen for Cdb9 substrates. Genes and Development, 2016, 30, 117-131	5.9	105

ROBERT P FISHER

#	Article	IF	CITATIONS
19	An IGF2BP3-Cdk9 Pathway Governs the Human Fetal-Adult Megakaryocyte Transition. Blood, 2016, 128, 886-886.	1.4	0
20	Functional interaction of Rpb1 and Spt5 C-terminal domains in co-transcriptional histone modification. Nucleic Acids Research, 2015, 43, gkv837.	14.5	21
21	The structure and substrate specificity of human Cdk12/Cyclin K. Nature Communications, 2014, 5, 3505.	12.8	141
22	A Cdk7-Cdk4 T-Loop Phosphorylation Cascade Promotes G1 Progression. Molecular Cell, 2013, 50, 250-260.	9.7	115
23	The CDK-activating kinase Cdk7. Cell Cycle, 2013, 12, 3239-3240.	2.6	41
24	Modelling the CDK-dependent transcription cycle in fission yeast. Biochemical Society Transactions, 2013, 41, 1660-1665.	3.4	5
25	The PAF Complex and Prf1/Rtf1 Delineate Distinct Cdk9-Dependent Pathways Regulating Transcription Elongation in Fission Yeast. PLoS Genetics, 2013, 9, e1004029.	3.5	45
26	Pause, play, repeat. Transcription, 2013, 4, 146-152.	3.1	51
27	Chemical Genetics Reveals a Specific Requirement for Cdk2 Activity in the DNA Damage Response and Identifies Nbs1 as a Cdk2 Substrate in Human Cells. PLoS Genetics, 2012, 8, e1002935.	3.5	54
28	Chemical-genetic analysis of cyclin dependent kinase 2 function reveals an important role in cellular transformation by multiple oncogenic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1019-27.	7.1	64
29	A Positive Feedback Loop Links Opposing Functions of P-TEFb/Cdk9 and Histone H2B Ubiquitylation to Regulate Transcript Elongation in Fission Yeast. PLoS Genetics, 2012, 8, e1002822.	3.5	53
30	Why minimal is not optimal: Driving the mammalian cell cycle—and drug discovery—with a physiologic CDK control network. Cell Cycle, 2012, 11, 2600-2605.	2.6	13
31	The CDK Network: Linking Cycles of Cell Division and Gene Expression. Genes and Cancer, 2012, 3, 731-738.	1.9	86
32	Separate Domains of Fission Yeast Cdk9 (P-TEFb) Are Required for Capping Enzyme Recruitment and Primed (Ser7-Phosphorylated) Rpb1 Carboxyl-Terminal Domain Substrate Recognition. Molecular and Cellular Biology, 2012, 32, 2372-2383.	2.3	32
33	Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nature Structural and Molecular Biology, 2012, 19, 1108-1115.	8.2	556
34	Switching Cdk2 On or Off with Small Molecules to Reveal Requirements in Human Cell Proliferation. Molecular Cell, 2011, 42, 624-636.	9.7	76
35	Putting one step before the other: Distinct activation pathways for Cdk1 and Cdk2 bring order to the mammalian cell cycle. Cell Cycle, 2010, 9, 706-714.	2.6	15
36	Coming Full Circle: Cyclin-Dependent Kinases as Anti-cancer Drug Targets. Sub-Cellular Biochemistry, 2010, 50, 1-15.	2.4	5

ROBERT P FISHER

#	Article	IF	CITATIONS
37	TFIIH-Associated Cdk7 Kinase Functions in Phosphorylation of C-Terminal Domain Ser7 Residues, Promoter-Proximal Pausing, and Termination by RNA Polymerase II. Molecular and Cellular Biology, 2009, 29, 5455-5464.	2.3	274
38	p27 ^{Kip1} Inhibits Cyclin D-Cyclin-Dependent Kinase 4 by Two Independent Modes. Molecular and Cellular Biology, 2009, 29, 986-999.	2.3	107
39	Behind the wheel and under the hood: Functions of cyclin-dependent kinases in response to DNA damage. DNA Repair, 2009, 8, 1018-1024.	2.8	55
40	TFIIH and P-TEFb Coordinate Transcription with Capping Enzyme Recruitment at Specific Genes in Fission Yeast. Molecular Cell, 2009, 33, 738-751.	9.7	101
41	Distinct Activation Pathways Confer Cyclin-Binding Specificity on Cdk1 and Cdk2 in Human Cells. Molecular Cell, 2008, 32, 662-672.	9.7	78
42	Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4383-4388.	7.1	228
43	Requirements for Cdk7 in the Assembly of Cdk1/Cyclin B and Activation of Cdk2 Revealed by Chemical Genetics in Human Cells. Molecular Cell, 2007, 25, 839-850.	9.7	221
44	Dichotomous but stringent substrate selection by the dual-function Cdk7 complex revealed by chemical genetics. Nature Structural and Molecular Biology, 2006, 13, 55-62.	8.2	86
45	The Cyclin-Dependent Kinase (CDK) Family Member PNQALRE/CCRK Supports Cell Proliferation but has no Intrinsic CDK-Activating Kinase (CAK) Activity. Cell Cycle, 2006, 5, 546-554.	2.6	53
46	Cyclin-Dependent Kinase 9 (Cdk9) of Fission Yeast Is Activated by the CDK-Activating Kinase Csk1, Overlaps Functionally with the TFIIH-Associated Kinase Mcs6, and Associates with the mRNA Cap Methyltransferase Pcm1 In Vivo. Molecular and Cellular Biology, 2006, 26, 777-788.	2.3	51
47	Secrets of a double agent: CDK7 in cell-cycle control and transcription. Journal of Cell Science, 2005, 118, 5171-5180.	2.0	288
48	Impairment of the TFIIH-associated CDK-activating Kinase Selectively Affects Cell Cycle-regulated Gene Expression in Fission Yeast. Molecular Biology of the Cell, 2005, 16, 2734-2745.	2.1	53
49	A CDK-Activating Kinase Network Is Required in Cell Cycle Control and Transcription in Fission Yeast. Current Biology, 2002, 12, 1100-1105.	3.9	43
50	Reciprocal Activation by Cyclin-Dependent Kinases 2 and 7 Is Directed by Substrate Specificity Determinants outside the T Loop. Molecular and Cellular Biology, 2001, 21, 88-99.	2.3	68
51	Cdc2 activation in fission yeast depends on Mcs6 and Csk1, two partially redundant Cdk-activating kinases (CAKs). Current Biology, 1999, 9, 441-444.	3.9	59
52	A novel cyclin associates with M015/CDK7 to form the CDK-activating kinase. Cell, 1994, 78, 713-724.	28.9	633