Yong Lei

List of Publications by Citations

Source: https://exaly.com/author-pdf/23338/yong-lei-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

64 14,458 254 112 h-index g-index citations papers 16,589 6.97 10.3 277 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
254	Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. <i>Journal of the American Chemical Society</i> , 2013 , 135, 17881-8	16.4	1750
253	Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. <i>Nature Communications</i> , 2018 , 9, 1720	17.4	612
252	Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. <i>Applied Physics Letters</i> , 2001 , 78, 1125-1127	3.4	544
251	Catalytic Growth of Semiconducting In2O3 Nanofibers. Advanced Materials, 2001, 13, 1330	24	387
250	Potassium Prussian Blue Nanoparticles: A Low-Cost Cathode Material for Potassium-Ion Batteries. <i>Advanced Functional Materials</i> , 2017 , 27, 1604307	15.6	310
249	Extended Econjugated system for fast-charge and -discharge sodium-ion batteries. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3124-30	16.4	275
248	Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting. <i>ACS Nano</i> , 2014 , 8, 7088-98	16.7	252
247	Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. <i>Energy and Environmental Science</i> , 2015 , 8, 2954-2962	35.4	246
246	Highly ordered nanostructures with tunable size, shape and properties: A new way to surface nano-patterning using ultra-thin alumina masks. <i>Progress in Materials Science</i> , 2007 , 52, 465-539	42.2	217
245	Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: An investigation combining confocal microscopy and first principles calculations. <i>Journal of Applied Physics</i> , 2013 , 114, 034901	2.5	211
244	Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3. <i>Chemical Physics Letters</i> , 2001 , 338, 231-236	2.5	182
243	Surface patterning using templates: concept, properties and device applications. <i>Chemical Society Reviews</i> , 2011 , 40, 1247-58	58.5	172
242	A convenient route to polyacrylonitrile/silver nanoparticle composite by simultaneous polymerizationEeduction approach. <i>Polymer</i> , 2001 , 42, 8315-8318	3.9	163
241	First-principles investigation of the size-dependent structural stability and electronic properties of O-vacancies at the ZnO polar and non-polar surfaces. <i>Journal of Applied Physics</i> , 2013 , 113, 014304	2.5	158
240	Organic materials for rechargeable sodium-ion batteries. <i>Materials Today</i> , 2018 , 21, 60-78	21.8	152
239	Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8768-71	16.4	150
238	Controllable growth and field-effect property of monolayer to multilayer microstripes of an organic semiconductor. <i>Journal of the American Chemical Society</i> , 2010 , 132, 8807-9	16.4	146

(2011-2016)

237	Nanoarchitectured Array Electrodes for Rechargeable Lithium- and Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1502514	21.8	140
236	Fabrication and Structural Characterization of Large-Scale Uniform SnO2Nanowire Array Embedded in Anodic Alumina Membrane. <i>Chemistry of Materials</i> , 2001 , 13, 3859-3861	9.6	135
235	Puzzles and confusions in supercapacitor and battery: Theory and solutions. <i>Journal of Power Sources</i> , 2018 , 401, 213-223	8.9	133
234	Multiple nanostructures based on anodized aluminium oxide templates. <i>Nature Nanotechnology</i> , 2017 , 12, 244-250	28.7	132
233	Fe(III) modified BiOCl ultrathin nanosheet towards high-efficient visible-light photocatalyst. <i>Nano Energy</i> , 2016 , 30, 109-117	17.1	130
232	Morphology-Controlled Growth of Large-Area Two-Dimensional Ordered Pore Arrays. <i>Advanced Functional Materials</i> , 2004 , 14, 283-288	15.6	125
231	Highly Ordered Three-Dimensional Ni-TiO2 Nanoarrays as Sodium Ion Battery Anodes. <i>Chemistry of Materials</i> , 2015 , 27, 4274-4280	9.6	124
230	Recent Advances in Designing and Fabricating Self-Supported Nanoelectrodes for Supercapacitors. <i>Advanced Science</i> , 2017 , 4, 1700188	13.6	122
229	Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells. <i>Energy and Environmental Science</i> , 2017 , 10, 2570-2578	35.4	122
228	High performance supercapacitor for efficient energy storage under extreme environmental temperatures. <i>Nano Energy</i> , 2014 , 8, 231-237	17.1	118
227	Manipulation of Disodium Rhodizonate: Factors for Fast-Charge and Fast-Discharge Sodium-Ion Batteries with Long-Term Cyclability. <i>Advanced Functional Materials</i> , 2016 , 26, 1777-1786	15.6	117
226	Surface Nanometer-Scale Patterning in Realizing Large-Scale Ordered Arrays of Metallic Nanoshells with Well-Defined Structures and Controllable Properties. <i>Advanced Functional Materials</i> , 2010 , 20, 252	7 ¹ .2533	115
225	Hexagonal prism-like hierarchical Co9S8@Ni(OH)2 coreBhell nanotubes on carbon fibers for high-performance asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 22782-22789	13	111
224	MOF-derived hierarchical nanosheet arrays constructed by interconnected NiCo-alloy@NiCo-sulfide core-shell nanoparticles for high-performance asymmetric supercapacitors. <i>Chemical Engineering Journal</i> , 2019 , 370, 666-676	14.7	111
223	Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique. <i>ACS Applied Materials & Company Co</i>	2 ² 2 ⁵ 8	108
222	Self-templated transformation of MOFs into layered double hydroxide nanoarrays with selectively formed Co9S8 for high-performance asymmetric supercapacitors. <i>Chemical Engineering Journal</i> , 2018 , 354, 716-726	14.7	107
221	Highly ordered arrays of metal/semiconductor core-shell nanoparticles with tunable nanostructures and photoluminescence. <i>Journal of the American Chemical Society</i> , 2005 , 127, 1487-92	16.4	107
220	Template-Confined Dewetting Process to Surface Nanopatterns: Fabrication, Structural Tunability, and Structure-Related Properties. <i>Advanced Functional Materials</i> , 2011 , 21, 2446-2455	15.6	106

219	Constructing a AZO/TiO2 Core/Shell Nanocone Array with Uniformly Dispersed Au NPs for Enhancing Photoelectrochemical Water Splitting. <i>Advanced Energy Materials</i> , 2016 , 6, 1501496	21.8	106
218	Shape and Size Control of Regularly Arrayed Nanodots Fabricated Using Ultrathin Alumina Masks. <i>Chemistry of Materials</i> , 2005 , 17, 580-585	9.6	99
217	p-Type CuBi2O4: an easily accessible photocathodic material for high-efficiency water splitting. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 8995-9001	13	95
216	Advances on three-dimensional electrodes for micro-supercapacitors: A mini-review. <i>Informat</i> ill <i>Materilly</i> , 2019 , 1, 74-84	23.1	91
215	Self-supported metallic nanopore arrays with highly oriented nanoporous structures as ideally nanostructured electrodes for supercapacitor applications. <i>Advanced Materials</i> , 2014 , 26, 7654-9	24	89
214	Fabrication and characterization of highly ordered Au nanowire arrays. <i>Journal of Materials Chemistry</i> , 2001 , 11, 1732-1734		89
213	A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO 2. <i>Nano Energy</i> , 2014 , 10, 63-70	17.1	88
212	Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications. <i>Nature Communications</i> , 2016 , 7, 10348	17.4	86
211	In Situ Synthesis and Phase Change Properties of Na2SO4[] 0H2O@SiO2 Solid Nanobowls toward Smart Heat Storage. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 20061-20066	3.8	86
210	Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries. <i>Nano Energy</i> , 2017 , 31, 514-524	17.1	85
209	Self-Stacked Reduced Graphene Oxide Nanosheets Coated with Cobalt-Nickel Hydroxide by One-Step Electrochemical Deposition toward Flexible Electrochromic Supercapacitors. <i>Small</i> , 2015 , 11, 4666-72	11	82
208	Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering. <i>Applied Physics Letters</i> , 2006 , 89, 181918	3.4	82
207	Template-directed construction of nanostructure arrays for highly-efficient energy storage and conversion. <i>Nano Energy</i> , 2015 , 13, 790-813	17.1	81
206	Designing Heterogeneous 1D Nanostructure Arrays Based on AAO Templates for Energy Applications. <i>Small</i> , 2015 , 11, 3408-28	11	81
205	Switchable charge-transfer in the photoelectrochemical energy-conversion process of ferroelectric BiFeO[photoelectrodes. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 11027-31	16.4	80
204	In Situ Formation of Co9S8 Quantum Dots in MOF-Derived Ternary Metal Layered Double Hydroxide Nanoarrays for High-Performance Hybrid Supercapacitors. <i>Advanced Energy Materials</i> , 2020 , 10, 1903193	21.8	74
203	A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries. <i>Applied Catalysis B: Environmental</i> , 2019 , 241, 407-414	21.8	73
202	Enhancing potassium-ion battery performance by defect and interlayer engineering. <i>Nanoscale Horizons</i> , 2019 , 4, 202-207	10.8	73

(2005-2015)

201	Spatiotemporal Photopatterning on Polycarbonate Surface through Visible Light Responsive Polymer Bound DASA Compounds. <i>ACS Macro Letters</i> , 2015 , 4, 1273-1277	6.6	72
200	Highly Controllable Surface Plasmon Resonance Property by Heights of Ordered Nanoparticle Arrays Fabricated via a Nonlithographic Route. <i>ACS Nano</i> , 2015 , 9, 4583-90	16.7	71
199	Oxygen vacancies: Effective strategy to boost sodium storage of amorphous electrode materials. <i>Nano Energy</i> , 2017 , 38, 304-312	17.1	70
198	One-step synthesis of architectural Ni3S2 nanosheet-on-nanorods array for use as high-performance electrodes for supercapacitors. <i>NPG Asia Materials</i> , 2016 , 8, e300-e300	10.3	69
197	Sub-100-nm nanoparticle arrays with perfect ordering and tunable and uniform dimensions fabricated by combining nanoimprinting with ultrathin alumina membrane technique. <i>ACS Nano</i> , 2014 , 8, 3862-8	16.7	68
196	Visible-light-enhanced gating effect at the LaAlOØSrTiOIInterface. <i>Nature Communications</i> , 2014 , 5, 5554	17.4	68
195	Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors. <i>Applied Physics Letters</i> , 2014 , 104, 053904	3.4	68
194	Hierarchical structured Ni nanoring and hollow sphere arrays by morphology inheritance based on ordered through-pore template and electrodeposition. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 1572	9333	68
193	Cost-effective atomic layer deposition synthesis of Pt nanotube arrays: application for high performance supercapacitor. <i>Small</i> , 2014 , 10, 3162-8	11	65
192	Large-Scale Fabrication of Three-Dimensional Surface Patterns Using Template-Defined Electrochemical Deposition. <i>Advanced Functional Materials</i> , 2013 , 23, 720-730	15.6	65
191	Fabrication, characterization, and photoluminescence properties of highly ordered TiO2 nanowire arrays. <i>Journal of Materials Research</i> , 2001 , 16, 1138-1144	2.5	65
190	Ultrathin alumina membranes for surface nanopatterning in fabricating quantum-sized nanodots. <i>Small</i> , 2010 , 6, 695-9	11	63
189	Elastic Carbon Nanotube Aerogel Meets Tellurium Nanowires: A Binder- and Collector-Free Electrode for Li-Te Batteries. <i>Advanced Functional Materials</i> , 2016 , 26, 3580-3588	15.6	62
188	Magnetocaloric effects in a freestanding and flexible graphene-based superlattice synthesized with a spatially confined reaction. <i>Nature Communications</i> , 2014 , 5, 3960	17.4	62
187	Building of anti-restack 3D BiOCl hierarchitecture by ultrathin nanosheets towards enhanced photocatalytic activity. <i>Applied Catalysis B: Environmental</i> , 2015 , 176-177, 331-337	21.8	61
186	An ab-initio study of the structural, electronic and magnetic properties of half-metallic ferromagnetism in Cr-doped BeSe and BeTe. <i>Solid State Sciences</i> , 2012 , 14, 1525-1535	3.4	61
185	A Selectively Permeable Membrane for Enhancing Cyclability of Organic Sodium-Ion Batteries. <i>Advanced Materials</i> , 2016 , 28, 9182-9187	24	59
184	Highly ordered CdS nanoparticle arrays on silicon substrates and photoluminescence properties. <i>Applied Physics Letters</i> , 2005 , 86, 103106	3.4	59

183	Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications. <i>Nanoscale</i> , 2011 , 3, 2768-82	7.7	58
182	Realizing ordered arrays of nanostructures: A versatile platform for converting and storing energy efficiently. <i>Nano Energy</i> , 2016 , 19, 328-362	17.1	56
181	In Situ Encapsulation of Iron Complex Nanoparticles into Biomass-Derived Heteroatom-Enriched Carbon Nanotubes for High-Performance Supercapacitors. <i>Advanced Energy Materials</i> , 2019 , 9, 1803221	21.8	56
180	Origins of Boosted Charge Storage on Heteroatom-Doped Carbons. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 7928-7933	16.4	54
179	A sonochemical approach to the confined synthesis of palladium nanoparticles in mesoporous silica. <i>Materials Letters</i> , 2001 , 50, 53-56	3.3	54
178	Anchor effect[In poly(styrene maleic anhydride)/TiO2 nanocomposites. <i>Journal of Materials Science Letters</i> , 1999 , 18, 2009-2012		54
177	Fabrication of large-scale zinc oxide ordered pore arrays with controllable morphology. <i>Chemical Communications</i> , 2004 , 1604-5	5.8	53
176	Self-supported carbon coated TiN nanotube arrays: innovative carbon coating leads to an improved cycling ability for supercapacitor applications. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3465-3470	13	52
175	Evaluating the Role of Nanostructured Current Collectors in Energy Storage Capability of Supercapacitor Electrodes with Thick Electroactive Materials Layers. <i>Advanced Functional Materials</i> , 2018 , 28, 1705107	15.6	50
174	Self-Supported BiMoO Nanowall for Photoelectrochemical Water Splitting. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 23647-23653	9.5	49
173	Hollow ternary PtPdCu nanoparticles: a superior and durable cathodic electrocatalyst. <i>Chemical Science</i> , 2015 , 6, 3038-3043	9.4	49
172	Recent Research Progress of Anode Materials for Potassium-ion Batteries. <i>Energy and Environmental Materials</i> , 2020 , 3, 105-120	13	49
171	1-Dimensional AgVO3 nanowires hybrid with 2-dimensional graphene nanosheets to create 3-dimensional composite aerogels and their improved electrochemical properties. <i>Nanoscale</i> , 2014 , 6, 3536-9	7.7	49
170	Degenerating Plasmonic Modes to Enhance the Performance of Surface Plasmon Resonance for Application in Solar Energy Conversion. <i>Advanced Energy Materials</i> , 2015 , 5, 1501654	21.8	49
169	MnO2-coated Ni nanorods: Enhanced high rate behavior in pseudo-capacitive supercapacitor. <i>Electrochimica Acta</i> , 2010 , 55, 7454-7459	6.7	49
168	Heterogeneous nanostructure array for electrochemical energy conversion and storage. <i>Nano Today</i> , 2018 , 20, 33-57	17.9	48
167	Well-Defined Nanostructures for Electrochemical Energy Conversion and Storage. <i>Advanced Energy Materials</i> , 2021 , 11, 2001537	21.8	47
166	Nanoengineering Energy Conversion and Storage Devices via Atomic Layer Deposition. <i>Advanced Energy Materials</i> , 2016 , 6, 1600468	21.8	46

(2018-2002)

165	Size control and charge storage mechanism of germanium nanocrystals in a metal-insulator-semiconductor structure. <i>Applied Physics Letters</i> , 2002 , 81, 3639-3641	3.4	45	
164	3D Nanostructures for the Next Generation of High-Performance Nanodevices for Electrochemical Energy Conversion and Storage. <i>Advanced Energy Materials</i> , 2020 , 10, 2001460	21.8	44	
163	Unexpected intercalation-dominated potassium storage in WS2 as a potassium-ion battery anode. <i>Nano Research</i> , 2019 , 12, 2997-3002	10	44	
162	A highly efficient visible-light driven photocatalyst: two dimensional square-like bismuth oxyiodine nanosheets. <i>Dalton Transactions</i> , 2014 , 43, 9549-56	4.3	44	
161	Observation of defect state in highly ordered titanium dioxide nanotube arrays. <i>Nanotechnology</i> , 2014 , 25, 275603	3.4	42	
160	Insights into the Crystallinity of Layer-Structured Transition Metal Dichalcogenides on Potassium Ion Battery Performance: A Case Study of Molybdenum Disulfide. <i>Small</i> , 2019 , 15, e1900497	11	41	
159	Understanding the Orderliness of Atomic Arrangement toward Enhanced Sodium Storage. <i>Advanced Energy Materials</i> , 2016 , 6, 1600448	21.8	40	
158	Electrochemically Created Highly Surface Roughened Ag Nanoplate Arrays for SERS Biosensing Applications. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8350-8356	7.1	40	
157	Assorted analytical and spectroscopic techniques for the optimization of the defect-related properties in size-controlled ZnO nanowires. <i>Nanoscale</i> , 2011 , 3, 4830-9	7.7	40	
156	Ammonium Vanadium Bronze as a Potassium-Ion Battery Cathode with High Rate Capability and Cyclability. <i>Small Methods</i> , 2019 , 3, 1800349	12.8	40	
155	Three-Dimensional Plasmonic Nanostructure Design for Boosting Photoelectrochemical Activity. <i>ACS Nano</i> , 2017 , 11, 7382-7389	16.7	39	
154	Ultra-low mass loading of platinum nanoparticles on bacterial cellulose derived carbon nanofibers for efficient hydrogen evolution. <i>Catalysis Today</i> , 2016 , 262, 141-145	5.3	38	
153	Facile synthesis of hierarchical fern leaf-like Sb and its application as an additive-free anode for fast reversible Na-ion storage. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 1749-1755	13	38	
152	Highly efficient solar cells based on Cl incorporated tri-cation perovskite materials. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13725-13734	13	37	
151	A transparent CdS@TiO nanotextile photoanode with boosted photoelectrocatalytic efficiency and stability. <i>Nanoscale</i> , 2017 , 9, 15650-15657	7.7	37	
150	Graphene-Sensitized Perovskite Oxide Monolayer Nanosheets for Efficient Photocatalytic Reaction. <i>Advanced Functional Materials</i> , 2018 , 28, 1806284	15.6	37	
149	Facile Transferring of Wafer-Scale Ultrathin Alumina Membranes onto Substrates for Nanostructure Patterning. <i>ACS Nano</i> , 2015 , 9, 8584-91	16.7	35	
148	Template-Guided Programmable Janus Heteronanostructure Arrays for Efficient Plasmonic Photocatalysis. <i>Nano Letters</i> , 2018 , 18, 4914-4921	11.5	34	

147	Large-Scale Ordered Carbon Nanotube Arrays Initiated from Highly Ordered Catalyst Arrays on Silicon Substrates. <i>Chemistry of Materials</i> , 2004 , 16, 2757-2761	9.6	34
146	CuMnO2-reduced graphene oxide nanocomposite as a free-standing electrode for high-performance supercapacitors. <i>Chemical Engineering Journal</i> , 2019 , 375, 121966	14.7	33
145	Bismuth oxychloride nanoflake assemblies as a new anode for potassium ion batteries. <i>Chemical Communications</i> , 2019 , 55, 6507-6510	5.8	33
144	Oxygen-functionalized soft carbon nanofibers as high-performance cathode of K-ion hybrid capacitor. <i>Nano Energy</i> , 2020 , 72, 104661	17.1	33
143	Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors. <i>Nature Communications</i> , 2020 , 11, 299	17.4	33
142	Construction of point-line-plane (0-1-2 dimensional) Fe2O3-SnO2/graphene hybrids as the anodes with excellent lithium storage capability. <i>Nano Research</i> , 2017 , 10, 121-133	10	33
141	A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage. <i>Frontiers of Chemical Science and Engineering</i> , 2018 , 12, 481-493	4.5	32
140	Fabrication and characterization of well-aligned, high density ZnO nanowire arrays and their realizations in Schottky device applications using a two-step approach. <i>Journal of Materials Chemistry</i> , 2011 , 21, 7090		32
139	Synthesis of germanium nanodots on silicon using an anodic alumina membrane mask. <i>Journal of Crystal Growth</i> , 2004 , 268, 560-563	1.6	32
138	Hierarchical Sb-Ni nanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells. <i>Nano Research</i> , 2017 , 10, 3189-3201	10	31
137	All-Solid-State Cable-Type Supercapacitors with Ultrahigh Rate Capability. <i>Advanced Materials Technologies</i> , 2016 , 1, 1600012	6.8	31
136	Anode materials for potassium-ion batteries: Current status and prospects 2020 , 2, 350-369		30
135	A General Strategy for Fabricating Unique Carbide Nanostructures with Excitation Wavelength-Dependent Light Emissions. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 7279-7284	3.8	30
134	Insights into the Influence of Work Functions of Cathodes on Efficiencies of Perovskite Solar Cells. <i>Small</i> , 2017 , 13, 1700007	11	29
133	Fully understanding the positive roles of plasmonic nanoparticles in ameliorating the efficiency of organic solar cells. <i>Nanoscale</i> , 2015 , 7, 15251-7	7.7	29
132	Review on Recent Advances of Cathode Materials for Potassium-ion Batteries. <i>Energy and Environmental Materials</i> , 2020 , 3, 56-66	13	28
131	Carrier Mobility-Dominated Gas Sensing: A Room-Temperature Gas-Sensing Mode for SnO Nanorod Array Sensors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 13895-13902	9.5	28
130	Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors. <i>Journal of Power Sources</i> , 2014 , 256, 37-42	8.9	28

129	Switchable Charge-Transfer in the Photoelectrochemical Energy-Conversion Process of Ferroelectric BiFeO3 Photoelectrodes. <i>Angewandte Chemie</i> , 2014 , 126, 11207-11211	28	
128	Review on Nanoarchitectured Current Collectors for Pseudocapacitors. <i>Small Methods</i> , 2019 , 3, 1800341 ₁₂ .	8 28	
127	Facile surface treatment on Cu2O photocathodes for enhancing the photoelectrochemical response. <i>Applied Catalysis B: Environmental</i> , 2016 , 198, 398-403	8 27	
126	Large-scale highly ordered arrays of freestanding magnetic nanowires. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16627	27	
125	MoS2 nanosheets with expanded interlayer spacing for enhanced sodium storage. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 3099-3105	27	
124	Dimensional Dependence of the Optical Absorption Band Edge of TiO2 Nanotube Arrays beyond the Quantum Effect. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 16331-16337	26	
123	Ordered nanoporous nickel films and their magnetic properties. <i>Chemical Physics Letters</i> , 2003 , 380, 313-23-5	8 26	
122	Intertwined Cu3V2O7(OH)2DH2O nanowires/carbon fibers composite: A new anode with high rate capability for sodium-ion batteries. <i>Journal of Power Sources</i> , 2015 , 294, 193-200	25	
121	Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2. <i>Scientific Reports</i> , 2014 , 4, 5742	24	
120	Ag-Nanoparticles@Bacterial Nanocellulose as a 3D Flexible and Robust Surface-Enhanced Raman Scattering Substrate. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 50713-50720 9.5	24	
119	Mild-Temperature Solution-Assisted Encapsulation of Phosphorus into ZIF-8 Derived Porous Carbon as Lithium-Ion Battery Anode. <i>Small</i> , 2020 , 16, e1907141	23	
118	Visible-light-accelerated oxygen vacancy migration in strontium titanate. <i>Scientific Reports</i> , 2015 , 5, 145769	23	
117	Ordered arrays of highly oriented single-crystal semiconductor nanoparticles on silicon substrates. Nanotechnology, 2005, 16, 1892-1898	23	
116	Highly sensitive surface-enhanced Raman scattering detection of organic pesticides based on Ag-nanoplate decorated graphene-sheets. <i>Applied Surface Science</i> , 2019 , 486, 405-410	22	
115	Preparation of highly ordered nanoporous Co membranes assembled by small quantum-sized Co particles. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 1109	22	
114	Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications. <i>Materials Science in Semiconductor Processing</i> , 4.3 2020 , 105, 104704	22	
113	Recent advances in ferromagnetic metal sulfides and selenides as anodes for sodium- and potassium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9506-9534	22	
112	Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies. <i>Angewandte Chemie</i> , 2015 , 127, 8892-8895	21	

111	Exploration of nanowire- and nanotube-based electrocatalysts for oxygen reduction and oxygen evolution reaction. <i>Materials Today Nano</i> , 2018 , 3, 54-68	9.7	21
110	Synchronous Formation of ZnO/ZnS Core/Shell Nanotube Arrays with Removal of Template for Meliorating Photoelectronic Performance. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 1575-1582	3.8	20
109	Rapid and Controllable Synthesis of Nanocrystallized Nickel-Cobalt Boride Electrode Materials via a Mircoimpinging Stream Reaction for High Performance Supercapacitors. <i>Small</i> , 2020 , 16, e2003342	11	20
108	Polyimide@Ketjenblack Composite: A Porous Organic Cathode for Fast Rechargeable Potassium-Ion Batteries. <i>Small</i> , 2020 , 16, e2002953	11	20
107	Incorporating ultra-small N-doped Mo2C nanoparticles onto 3D N-doped flower-like carbon nanospheres for robust electrocatalytic hydrogen evolution. <i>Nano Energy</i> , 2021 , 86, 106047	17.1	20
106	MOF-assisted three-dimensional TiO2@C core/shell nanobelt arrays as superior sodium ion battery anodes. <i>Journal of Alloys and Compounds</i> , 2018 , 769, 257-263	5.7	19
105	Surface-Enhanced Raman Scattering (SERS) Substrate Based on Large-Area Well-Defined Gold Nanoparticle Arrays with High SERS Uniformity and Stability. <i>ChemPlusChem</i> , 2014 , 79, 1622-1630	2.8	19
104	Hollow submicrospheres of trimetallic selenides for high-capacity lithium and sodium ion batteries. <i>Chemical Engineering Journal</i> , 2021 , 405, 126724	14.7	19
103	Rationally Engineered Electrodes for a High-Performance Solid-State Cable-Type Supercapacitor. <i>Advanced Functional Materials</i> , 2017 , 27, 1606696	15.6	18
102	Direct extraction of carbonyl from waste polycarbonate with amines under environmentally friendly conditions: scope of waste polycarbonate as a carbonylating agent in organic synthesis. <i>RSC Advances</i> , 2015 , 5, 3454-3460	3.7	18
101	Surface Charge Polarization at the Interface: Enhancing the Oxygen Reduction via Precise Synthesis of Heterogeneous Ultrathin Pt/PtTe Nanowire. <i>Chemistry of Materials</i> , 2016 , 28, 8890-8898	9.6	18
100	Sensitive Gas-Sensing by Creating Adsorption Active Sites: Coating an SnO Layer on Triangle Arrays. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 29092-29099	9.5	18
99	Micro-nanostructured BiO with surface oxygen vacancies as superior adsorbents for SeO ions. Journal of Hazardous Materials, 2018 , 360, 279-287	12.8	18
98	Tailoring conductive networks within hollow carbon nanospheres to host phosphorus for advanced sodium ion batteries. <i>Nano Energy</i> , 2020 , 70, 104569	17.1	18
97	Highly-Ordered 3D Vertical Resistive Switching Memory Arrays with Ultralow Power Consumption and Ultrahigh Density. <i>ACS Applied Materials & Density (Naterials & Density (Nateri</i>	9.5	17
96	Janus particle arrays with multiple structural controlling abilities synthesized by seed-directed deposition. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11930		17
95	Scalable fabrication of geometry-tunable self-aligned superlattice photonic crystals for spectrum-programmable light trapping. <i>Nano Energy</i> , 2019 , 58, 543-551	17.1	16
94	High-resolution atomic force microscope nanotip grown by self-field emission. <i>Applied Physics Letters</i> , 2002 , 81, 3037-3039	3.4	16

(2003-2020)

93	Silver nanoparticle-assembled micro-bowl arrays for sensitive SERS detection of pesticide residue. <i>Nanotechnology</i> , 2020 , 31, 205303	3.4	16
92	TiO2/TiOxNY hollow mushrooms-like nanocomposite photoanode for hydrogen electrogeneration. <i>Journal of Porous Materials</i> , 2020 , 27, 133-139	2.4	16
91	High performance lithium-ion capacitors based on LiNbO3-arched 3D graphene aerogel anode and BCNNT cathode with enhanced kinetics match. <i>Chemical Engineering Journal</i> , 2020 , 396, 125207	14.7	15
90	Gold nanochestnut arrays as ultra-sensitive SERS substrate for detecting trace pesticide residue. <i>Nanotechnology</i> , 2018 , 29, 295502	3.4	15
89	Growth control of AgTCNQ nanowire arrays by using a template-assisted electro-deposition method. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 8003	7.1	15
88	Mesoscopic self-assembling morphology of polymer based on emulsification. <i>Materials Research Bulletin</i> , 2000 , 35, 1625-1630	5.1	15
87	A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array:PbS quantum dot solar cells. <i>Nanoscale</i> , 2016 , 8, 10198-204	7.7	15
86	Synthesis and field emission properties of different ZnO nanostructure arrays. <i>Nanoscale Research Letters</i> , 2012 , 7, 197	5	14
85	Ni/Au hybrid nanoparticle arrays as a highly efficient, cost-effective and stable SERS substrate. <i>RSC Advances</i> , 2015 , 5, 6172-6180	3.7	14
84	Effective approach to strengthen plasmon resonance localized on top surfaces of Ag nanoparticles and application in surface-enhanced Raman spectroscopy. <i>Nanotechnology</i> , 2016 , 27, 445301	3.4	14
83	Optimizing hydrogen evolution activity of nanoporous electrodes by dual-step surface engineering. <i>Applied Catalysis B: Environmental</i> , 2019 , 244, 87-95	21.8	14
82	A hybrid solid electrolyte for solid-state sodium ion batteries with good cycle performance. <i>Nanotechnology</i> , 2020 , 31, 425401	3.4	13
81	The morphology and structure of crystals in Qing Dynasty purple-gold glaze excavated from the Forbidden City. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 5229-5240	3.8	13
80	Template-Assisted Fabrication of Nanostructured Arrays for Sensing Applications. <i>ChemPlusChem</i> , 2018 , 83, 741-755	2.8	13
79	The shift of the optical absorption band edge of ZnO/ZnS core/shell nanotube arrays beyond quantum effects. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 1369-1374	7.1	12
78	Interface and strain effects on the H-sorption thermodynamics of size-selected Mg nanodots. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 9841-9851	6.7	12
77	Selective growth and piezoelectric properties of highly ordered arrays of vertical ZnO nanowires on ultrathin alumina membranes. <i>Applied Physics Letters</i> , 2010 , 97, 053106	3.4	12
76	Effects of rapid thermal annealing time and ambient temperature on the charge storage capability of SiO2/pure Ge/rapid thermal oxide memory structure. <i>Microelectronic Engineering</i> , 2003 , 66, 218-223	2.5	12

75	Recent Development of Electrocatalytic CO Reduction Application to Energy Conversion. <i>Small</i> , 2021 , 17, e2100323	11	12
74	Collection optimization of photo-generated charge carriers for efficient organic solar cells. <i>Journal of Power Sources</i> , 2019 , 412, 465-471	8.9	12
73	Template-assisted fabrication of Ag-nanoparticles@ZnO-nanorods array as recyclable 3D surface enhanced Raman scattering substrate for rapid detection of trace pesticides. <i>Nanotechnology</i> , 2021 , 32, 145302	3.4	12
72	Insight into Nickel-Cobalt Oxysulfide Nanowires as Advanced Anode for Sodium-Ion Capacitors. <i>Advanced Energy Materials</i> , 2021 , 11, 2100408	21.8	12
71	Enhancement of the Immune Function by Titanium Dioxide Nanorods and Their Application in Cancer Immunotherapy. <i>Journal of Biomedical Nanotechnology</i> , 2017 , 13, 367-80	4	11
70	Visible light illumination-induced phase transition to the intermediate states between the metallic and insulating states for the LaAlO3/SrTiO3 interfaces. <i>Applied Physics Letters</i> , 2014 , 105, 241601	3.4	11
69	Realizing super-long Cu2O nanowires arrays for high-efficient water splitting applications with a convenient approach. <i>Journal of Semiconductors</i> , 2019 , 40, 052701	2.3	10
68	Surface microfluidic patterning and transporting organic small molecules. <i>Small</i> , 2014 , 10, 2549-52	11	10
67	A simple technique for the facile synthesis of novel crystalline mesoporous ZrO2Al2O3 hierarchical nanostructures with high lead (II) ion absorption ability. <i>Applied Surface Science</i> , 2013 , 284, 412-418	6.7	10
66	Highly efficient biosensors by using well-ordered ZnO/ZnS core/shell nanotube arrays. <i>Nanotechnology</i> , 2017 , 28, 405501	3.4	10
65	Benchmark Experiment to Prove the Role of Projectile Excited States Upon the Ion Stopping in Plasmas. <i>Physical Review Letters</i> , 2021 , 126, 115001	7.4	10
64	Enhanced Potassium Storage Capability of Two-Dimensional Transition-Metal Chalcogenides Enabled by a Collective Strategy. <i>ACS Applied Materials & Discrete Strategy</i> . 13, 18838-18848	9.5	10
63	Constructing Well-Ordered CdTe/TiO Core/Shell Nanowire Arrays for Solar Energy Conversion. <i>Small</i> , 2016 , 12, 5538-5542	11	9
62	Donor-acceptor Stenhouse adduct-grafted polycarbonate surfaces: selectivity of the reaction for secondary amine on surface. <i>Royal Society Open Science</i> , 2018 , 5, 180207	3.3	9
61	Monitoring oxide quality using the spread of the dC/dV peak in scanning capacitance microscopy measurements. <i>IEEE Electron Device Letters</i> , 2003 , 24, 667-670	4.4	9
60	Bismuth Nanoparticles Confined in Carbonaceous Nanospheres as Anodes for High-Performance Potassium-Ion Batteries. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2021 , 13, 31766-31774	9.5	9
59	Biomass-derived highly dispersed Co/Co9S8 nanoparticles encapsulated in S, N-co-doped hierarchically porous carbon as an efficient catalyst for hybrid NatiO2 batteries. <i>Materials Today Energy</i> , 2021 , 19, 100594	7	9
58	Origins of Boosted Charge Storage on Heteroatom-Doped Carbons. <i>Angewandte Chemie</i> , 2020 , 132, 8002-8007	3.6	8

(2005-2013)

57	DFTI⊫U study of the structural and electronic properties of the ferromagnetic and antiferromagnetic ordering in the PbS-based ternary alloys Pb1⊠EuxS (xI≢I0.25, 0.50, 0.75 and 1). <i>Solid State Sciences</i> , 2013 , 18, 24-35	3.4	8	
56	Electrical characterization of a trilayer germanium nanocrystal memory device. <i>Microelectronic Engineering</i> , 2003 , 66, 33-38	2.5	8	
55	Dopant extraction from scanning capacitance microscopy measurements of p-n junctions using combined inverse modeling and forward simulation. <i>Applied Physics Letters</i> , 2002 , 80, 4837-4839	3.4	8	
54	Programmable Multiple Plasmonic Resonances of Nanoparticle Superlattice for Enhancing Photoelectrochemical Activity. <i>Advanced Functional Materials</i> , 2020 , 30, 2005170	15.6	8	
53	Electrical Conductivity Adjustment for Interface Capacitive-Like Storage in Sodium-Ion Battery. <i>Advanced Functional Materials</i> , 2021 , 31, 2101081	15.6	8	
52	Nanostructured arrays for metallon battery and metallir battery applications. <i>Journal of Power Sources</i> , 2021 , 493, 229722	8.9	8	
51	Energy loss of protons in hydrogen plasma. <i>Laser and Particle Beams</i> , 2018 , 36, 98-104	0.9	7	
50	Nickel nanopore arrays as promising current collectors for constructing solid-state supercapacitors with ultrahigh rate performance. <i>Frontiers of Chemical Science and Engineering</i> , 2018 , 12, 339-345	4.5	7	
49	Intercalation and exfoliation syntheses of high specific surface area graphene and FeC2O4/graphene composite for anode material of lithium ion battery. <i>Fullerenes Nanotubes and Carbon Nanostructures</i> , 2019 , 27, 746-754	1.8	7	
48	Vectorial diffusion for facile solution-processed self-assembly of insoluble semiconductors: a case study on metal phthalocyanines. <i>Chemistry - A European Journal</i> , 2014 , 20, 10990-5	4.8	7	
47	Recent Advances in 2D Heterostructures as Advanced Electrode Materials for Potassium-Ion Batteries. <i>Small Structures</i> ,2100221	8.7	7	
46	Efficient Organic Solar Cells Enabled by Simple Non-Fused Electron Donors with Low Synthetic Complexity. <i>Small</i> , 2021 , e2104623	11	7	
45	Realization of Moisture-Resistive Perovskite Films for Highly Efficient Solar Cells Using Molecule Incorporation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 39063-39073	9.5	7	
44	A PROVENANCE STUDY OF TANG SANCAI FROM CHINESE TOMBS AND RELICS BY INAA*. Archaeometry, 2007 , 49, 483-494	1.6	6	
43	Glucosamine-induced growth of highly distributed TiO2 nanoparticles on graphene nanosheets as high-performance photocatalysts. <i>RSC Advances</i> , 2016 , 6, 67039-67048	3.7	6	
42	Structural and local electronic properties of clean and Li-intercalated graphene on SiC(0001). <i>Surface Science</i> , 2020 , 699, 121638	1.8	5	
41	Two-step synthesis method for regular arrays of nano-particles embedded in oxide layers. <i>Chemical Physics Letters</i> , 2011 , 513, 99-102	2.5	5	
40	Morphology controlled growth of large area ordered porous film. <i>Materials Science and Technology</i> , 2005 , 21, 500-504	1.5	5	

39	High-Performance Quasi-Solid-State Na-Air Battery via Gel Cathode by Confining Moisture. <i>Advanced Functional Materials</i> , 2021 , 31, 2011151	15.6	5
38	Updated Insights into 3D Architecture Electrodes for Micropower Sources. <i>Advanced Materials</i> , 2021 , 33, e2103304	24	5
37	Nonequilibrium Bond Forces in Single-Molecule Junctions. <i>Nano Letters</i> , 2019 , 19, 7845-7851	11.5	4
36	A novel approach to synthesize porous graphene by the transformation and deoxidation of oxygen-containing functional groups. <i>Chinese Chemical Letters</i> , 2019 , 30, 2313-2317	8.1	4
35	Double-peak structures in transmission of H2+ ions through conical multicapillaries in a polymer: Projectile-energy dependence. <i>Physical Review A</i> , 2015 , 91,	2.6	4
34	Carbon-Free Crystal-like FeS as an Anode for Potassium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 55218-55226	9.5	4
33	Highly-rough surface carbon nanofibers film as an effective interlayer for lithiumBulfur batteries. Journal of Semiconductors, 2020 , 41, 092701	2.3	4
32	Well-defined nanostructuring with designable anodic aluminum oxide template <i>Nature Communications</i> , 2022 , 13, 2435	17.4	4
31	The optimization of optical modes in Ni-BiVO nanoarrays for boosting photoelectrochemical water splitting. <i>Nanotechnology</i> , 2019 , 30, 445403	3.4	3
30	Emerging smart design of electrodes for micro-supercapacitors: A review. SmartMat,	22.8	3
30 29		22.8	3
	Emerging smart design of electrodes for micro-supercapacitors: A review. <i>SmartMat</i> , A close step towards industrialized application of solar water splitting. <i>Journal of Semiconductors</i> ,		
29	Emerging smart design of electrodes for micro-supercapacitors: A review. <i>SmartMat</i> , A close step towards industrialized application of solar water splitting. <i>Journal of Semiconductors</i> , 2020, 41, 090401 Ag-Nanoparticles-Decorated Ge-Nanowhisker Grafted on Carbon Fiber Cloth as Flexible and	2.3	3
29	Emerging smart design of electrodes for micro-supercapacitors: A review. <i>SmartMat</i> , A close step towards industrialized application of solar water splitting. <i>Journal of Semiconductors</i> , 2020, 41, 090401 Ag-Nanoparticles-Decorated Ge-Nanowhisker Grafted on Carbon Fiber Cloth as Flexible and Effective SERS Substrates. <i>ChemistrySelect</i> , 2020, 5, 8338-8343 Photolithography-Compatible Templated Patterning of Functional Organic Materials in Emulsion.	2.3	3
29 28 27	Emerging smart design of electrodes for micro-supercapacitors: A review. SmartMat, A close step towards industrialized application of solar water splitting. Journal of Semiconductors, 2020, 41, 090401 Ag-Nanoparticles-Decorated Ge-Nanowhisker Grafted on Carbon Fiber Cloth as Flexible and Effective SERS Substrates. ChemistrySelect, 2020, 5, 8338-8343 Photolithography-Compatible Templated Patterning of Functional Organic Materials in Emulsion. Advanced Science, 2016, 3, 1500304 Ordered nanostructures arrays fabricated by anodic aluminum oxide (AAO) template-directed	2.3 1.8 13.6	3 3
29 28 27 26	Emerging smart design of electrodes for micro-supercapacitors: A review. SmartMat, A close step towards industrialized application of solar water splitting. Journal of Semiconductors, 2020, 41, 090401 Ag-Nanoparticles-Decorated Ge-Nanowhisker Grafted on Carbon Fiber Cloth as Flexible and Effective SERS Substrates. ChemistrySelect, 2020, 5, 8338-8343 Photolithography-Compatible Templated Patterning of Functional Organic Materials in Emulsion. Advanced Science, 2016, 3, 1500304 Ordered nanostructures arrays fabricated by anodic aluminum oxide (AAO) template-directed methods for energy conversion. Nanotechnology, 2021, 32, Rational Design of Electrolyte Solvation Structures for Modulating 2e []/4e [] Transfer in	2.3 1.8 13.6	33333
29 28 27 26 25	Emerging smart design of electrodes for micro-supercapacitors: A review. SmartMat, A close step towards industrialized application of solar water splitting. Journal of Semiconductors, 2020, 41, 090401 Ag-Nanoparticles-Decorated Ge-Nanowhisker Grafted on Carbon Fiber Cloth as Flexible and Effective SERS Substrates. ChemistrySelect, 2020, 5, 8338-8343 Photolithography-Compatible Templated Patterning of Functional Organic Materials in Emulsion. Advanced Science, 2016, 3, 1500304 Ordered nanostructures arrays fabricated by anodic aluminum oxide (AAO) template-directed methods for energy conversion. Nanotechnology, 2021, 32, Rational Design of Electrolyte Solvation Structures for Modulating 2e []/4e []Transfer in Sodium Batteries. Advanced Functional Materials, 2201258 Batteries: Potassium Prussian Blue Nanoparticles: A Low-Cost Cathode Material for Potassium-Ion	2.3 1.8 13.6 3.4	33333

(2016-2020)

21	Preface to the Special Issue on Challenges and Possibilities of Energy Storage. <i>Journal of Semiconductors</i> , 2020 , 41, 090101	2.3	2
20	Bismuth selenide nanosheets confined in thin carbon layers as anode materials for advanced potassium-ion batteries. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 4267-4275	6.8	2
19	Construction of Co0.85Se@nickel nanopores array hybrid electrode for high-performance asymmetric supercapacitors. <i>Chemical Engineering Science</i> , 2022 , 247, 117081	4.4	2
18	Catalytic Growth of Semiconducting In2O3 Nanofibers 2001 , 13, 1330		2
17	Continuous Transformations of the Nucleation Mechanism in the Undercooled State. <i>Crystal Growth and Design</i> , 2018 , 18, 2905-2911	3.5	1
16	Nanowire Arrays: Constructing Well-Ordered CdTe/TiO2 Core/Shell Nanowire Arrays for Solar Energy Conversion (Small 40/2016). <i>Small</i> , 2016 , 12, 5648-5648	11	1
15	MBsbauer spectroscopy and magnetization of ordered arrays of ultrathin FePt nanodisks with perpendicular magnetisation. <i>Hyperfine Interactions</i> , 2012 , 211, 135-145	0.8	1
14	The formation of an Altuto type decagonal quasicrystal in an [AlCuFe][AlCoNi] pseudo-binary alloy system. <i>Philosophical Magazine</i> , 2006 , 86, 475-481	1.6	1
13	Sodium-Ion Batteries: Understanding the Orderliness of Atomic Arrangement toward Enhanced Sodium Storage (Adv. Energy Mater. 23/2016). <i>Advanced Energy Materials</i> , 2016 , 6,	21.8	1
12	Insights into the interfacial chemistry and conversion mechanism of iron oxalate toward the reduction by lithium. <i>Chemical Engineering Journal</i> , 2021 , 426, 131446	14.7	1
11	Low voltage driven surface micro-flow by Joule heating. <i>RSC Advances</i> , 2017 , 7, 29464-29468	3.7	0
10	Gas-Flow-Assisted Wrinkle-Free Transfer of a Centimeter-Scale Ultrathin Alumina Membrane onto Arbitrary Substrates. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 35124-35132	9.5	O
9	A highly robust self-supporting nickel nanoarray based on anodic alumina oxide template for determination of dopamine. <i>Sensors and Actuators B: Chemical</i> , 2021 , 350, 130835	8.5	O
8	Nanostructured metal selenides as anodes for potassium-ion batteries. <i>Sustainable Energy and Fuels</i> ,	5.8	O
7	Efficient SERS Substrate Fabricated by Simple Aluminum Pits Template. <i>Materials Science Forum</i> , 2017 , 896, 26-31	0.4	
6	Nanostructure Arrays: Designing Heterogeneous 1D Nanostructure Arrays Based on AAO Templates for Energy Applications (Small 28/2015). <i>Small</i> , 2015 , 11, 3407-3407	11	
5	Fabrication, Characterization and Physical Properties of Nanostructured Metal Replicated Membranes 2003 , 93-96		
4	Binder/Collector-Free Te Cathodes: Elastic Carbon Nanotube Aerogel Meets Tellurium Nanowires: A Binder- and Collector-Free Electrode for Li-Te Batteries (Adv. Funct. Mater. 21/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 3747-3747	15.6	

		Yong Lei
3	An efficient nanopatterning strategy for controllably fabricating ultra-small gaps as a highly sensitive surface-enhanced Raman scattering platform. <i>Nanotechnology</i> , 2020 , 31, 045301	3.4
2	MOCVD Compatible Atomic Layer Deposition Process of Al2O3 on SiC and Graphene/SiC Heterostructures. <i>Materials Science Forum</i> , 2018 , 924, 506-510	0.4
1	An overview of metal-organic frameworks derived carbon as anode materials for sodium- and potassium-ion batteries. <i>Materials Today Sustainability</i> , 2022 , 100156	5