Pier-Emmanuel Tremblay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2333643/publications.pdf

Version: 2024-02-01

91 4,169 35
papers citations h-index

91 91 91 2916
all docs docs citations times ranked citing authors

60

g-index

#	Article	IF	Citations
1	J-PLUS: Spectral evolution of white dwarfs by PDF analysis. Astronomy and Astrophysics, 2022, 658, A79.	5.1	17
2	Kinematic properties of white dwarfs. Astronomy and Astrophysics, 2022, 658, A22.	5.1	11
3	A white dwarf accreting planetary material determined from X-ray observations. Nature, 2022, 602, 219-222.	27.8	22
4	The Ultramassive White Dwarfs of the Alpha Persei Cluster. Astrophysical Journal Letters, 2022, 926, L24.	8.3	10
5	The Atmospheric Response to High Nonthermal Electron-beam Fluxes in Solar Flares. II. Hydrogen-broadening Predictions for Solar Flare Observations with the Daniel K. Inouye Solar Telescope. Astrophysical Journal, 2022, 928, 190.	4.5	20
6	Spectral analysis of cool white dwarfs accreting from planetary systems: from the ultraviolet to the optical. Monthly Notices of the Royal Astronomical Society, 2022, 511, 71-82.	4.4	8
7	When Do Stars Go Boom?. Astrophysical Journal Letters, 2022, 931, L20.	8.3	O
8	Alkali metals in white dwarf atmospheres as tracers of ancient planetary crusts. Nature Astronomy, 2021, 5, 451-459.	10.1	28
9	Horizontal spreading of planetary debris accreted by white dwarfs. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1646-1667.	4.4	21
10	Forever young white dwarfs: When stellar ageing stops. Astronomy and Astrophysics, 2021, 649, L7.	5.1	31
11	Constraining the solar neighbourhood age–metallicity relation from white dwarf–main sequence binaries. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3165-3176.	4.4	21
12	Weighing stars from birth to death: mass determination methods across the HRD. Astronomy and Astrophysics Review, 2021, 29, 1.	25.5	38
13	J-PLUS: Systematic impact of metallicity on photometric calibration with the stellar locus. Astronomy and Astrophysics, 2021, 654, A61.	5.1	17
14	A catalogue of white dwarfs in <i>Gaia</i> EDR3. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3877-3896.	4.4	122
15	3D spectroscopic analysis of helium-line white dwarfs. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5274-5293.	4.4	16
16	Cool white dwarfs as standards for infrared observations. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3613-3623.	4.4	17
17	Single magnetic white dwarfs with Balmer emission lines: a small class with consistent physical characteristics as possible signposts for close-in planetary companions. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2564-2574.	4.4	17
18	<i>Gaia</i> white dwarfs within 40 pc – I. Spectroscopic observations of new candidates. Monthly Notices of the Royal Astronomical Society, 2020, 497, 130-145.	4.4	45

#	Article	IF	CITATIONS
19	Gaia white dwarfs within 40 pc II: the volume-limited Northern hemisphere sample. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1890-1908.	4.4	73
20	A white dwarf bound to the transiting planetary system WASP-98. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4416-4422.	4.4	5
21	COol Companions ON Ultrawide orbiTS (COCONUTS). I. A High-gravity T4 Benchmark around an Old White Dwarf and a Re-examination of the Surface-gravity Dependence of the L/T Transition. Astrophysical Journal, 2020, 891, 171.	4.5	23
22	Carbon star formation as seen through the non-monotonic initial–final mass relation. Nature Astronomy, 2020, 4, 1102-1110.	10.1	38
23	An ultra-massive white dwarf with a mixed hydrogen–carbon atmosphere as a likely merger remnant. Nature Astronomy, 2020, 4, 663-669.	10.1	29
24	Gravity and limb-darkening coefficients for compact stars: DA, DB, and DBA eclipsing white dwarfs. Astronomy and Astrophysics, 2020, 634, A93.	5.1	32
25	From hydrogen to helium: the spectral evolution of white dwarfs as evidence for convective mixing. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3540-3552.	4.4	27
26	Constraining planet formation around 6–8 M⊙ stars. Monthly Notices of the Royal Astronomical Society, 2020, 493, 765-775.	4.4	12
27	TESS first look at evolved compact pulsators. Astronomy and Astrophysics, 2020, 638, A82.	5.1	17
28	A White Dwarf with Transiting Circumstellar Material Far outside the Roche Limit. Astrophysical Journal, 2020, 897, 171.	4.5	68
29	A Systematic Search of Zwicky Transient Facility Data for Ultracompact Binary LISA-detectable Gravitational-wave Sources. Astrophysical Journal, 2020, 905, 32.	4.5	62
30	Intermediate-mass Stars Become Magnetic White Dwarfs. Astrophysical Journal Letters, 2020, 901, L14.	8.3	9
31	Doppler beaming factors for white dwarfs, main sequence stars, and giant stars. Astronomy and Astrophysics, 2020, 641, A157.	5.1	6
32	Calibration of the mixing-length theory for structures of helium-dominated atmosphere white dwarfs. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1010-1025.	4.4	22
33	Convective overshoot and macroscopic diffusion in pure-hydrogen-atmosphere white dwarfs. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2503-2522.	4.4	35
34	A <i>Gaia</i> Data Release 2 catalogue of white dwarfs and a comparison with SDSS. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4570-4591.	4.4	287
35	Fundamental parameter accuracy of DA and DB white dwarfs in <i>Gaia</i> Data Release 2. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5222-5232.	4.4	57
36	Orbital relaxation and excitation of planets tidally interacting with white dwarfs. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3831-3848.	4.4	21

#	Article	IF	CITATIONS
37	A Novel Approach to Constrain Rotational Mixing and Convective-core Overshoot in Stars Using the Initial–Final Mass Relation. Astrophysical Journal Letters, 2019, 871, L18.	8.3	21
38	Orbital Decay in a 20 Minute Orbital Period Detached Binary with a Hydrogen-poor Low-mass White Dwarf. Astrophysical Journal Letters, 2019, 886, L12.	8.3	42
39	Discovery of the first resolved triple white dwarf. Monthly Notices of the Royal Astronomical Society, 2019, 483, 901-907.	4.4	14
40	Core crystallization and pile-up in the cooling sequence of evolving white dwarfs. Nature, 2019, 565, 202-205.	27.8	97
41	J-PLUS: photometric calibration of large-area multi-filter surveys with stellar and white dwarf loci. Astronomy and Astrophysics, 2019, 631, A119.	5.1	36
42	Can magnetic fields suppress convection in the atmosphere of cool white dwarfs? A case study on WD2105â^820. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3693-3699.	4.4	27
43	Pure-helium 3D model atmospheres of white dwarfs. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1522-1537.	4.4	26
44	The White Dwarf Initial–Final Mass Relation for Progenitor Stars from 0.85 to 7.5 <i>M</i> _⊙ . Astrophysical Journal, 2018, 866, 21.	4.5	209
45	Fast spectrophotometry of WD 1145+017. Monthly Notices of the Royal Astronomical Society, 2018, 481, 703-714.	4.4	22
46	The Gaia 20 pc white dwarf sample. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3942-3961.	4.4	94
47	The onset of convective coupling and freezing in the white dwarfs of 47 Tucanae. Monthly Notices of the Royal Astronomical Society, 2018, 474, 677-682.	4.4	1
48	Evidence from K2 for Rapid Rotation in the Descendant of an Intermediate-mass Star. Astrophysical Journal Letters, 2017, 841, L2.	8.3	24
49	White Dwarf Rotation as a Function of Mass and a Dichotomy of Mode Line Widths: <i>Kepler</i> Observations of 27 Pulsating DA White Dwarfs through <i>K2</i> Campaign 8. Astrophysical Journal, Supplement Series, 2017, 232, 23.	7.7	128
50	Hydrogen Balmer Line Broadening in Solar and Stellar Flares. Astrophysical Journal, 2017, 837, 125.	4.5	45
51	Two white dwarfs in ultrashort binaries with detached, eclipsing, likely sub-stellar companions detected by K2. Monthly Notices of the Royal Astronomical Society, 2017, 471, 976-986.	4.4	35
52	The <i>Gaia</i> DR1 mass–radius relation for white dwarfs. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2849-2861.	4.4	41
53	Multiband photometry and spectroscopy of an all-sky sample of bright white dwarfs. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4173-4192.	4.4	20
54	Using large spectroscopic surveys to test the double degenerate model for TypeÂla supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2910-2922.	4.4	21

#	Article	IF	Citations
55	Destroying Aliases from the Ground and Space: Super-Nyquist ZZ Cetis in K2 Long Cadence Data. Astrophysical Journal, 2017, 851, 24.	4.5	15
56	White dwarfs in the Gaia era. Proceedings of the International Astronomical Union, 2017, 12, 317-320.	0.0	0
57	AN ULTRAMASSIVE 1.28 M _⊙ WHITE DWARF IN NGC 2099*. Astrophysical Journal Letters, 2016, 820, L18.	8.3	17
58	TWO MASSIVE WHITE DWARFS FROM NGC 2323 AND THE INITIAL–FINAL MASS RELATION FOR PROGENITORS OF 4–6.5 M _⊙ *. Astrophysical Journal, 2016, 818, 84.	4.5	35
59	OUTBURSTS IN TWO NEW COOL PULSATING DA WHITE DWARFS. Astrophysical Journal, 2016, 829, 82.	4.5	21
60	The field white dwarf mass distribution. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2100-2114.	4.4	99
61	CONSTRAINING WHITE DWARF STRUCTURE AND NEUTRINO PHYSICS IN 47 TUCANAE. Astrophysical Journal, 2016, 821, 27.	4.5	9
62	The search for ZZ Ceti stars in the original <i>Kepler</i> mission. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2855-2863.	4.4	13
63	A search for white dwarfs in the Galactic plane: the field and the open cluster population. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1988-2004.	4.4	18
64	ON THE EVOLUTION OF MAGNETIC WHITE DWARFS. Astrophysical Journal, 2015, 812, 19.	4.5	52
65	3D MODEL ATMOSPHERES FOR EXTREMELY LOW-MASS WHITE DWARFS. Astrophysical Journal, 2015, 809, 148.	4.5	60
66	New insights on pulsating white dwarfs from 3D radiation-hydrodynamical simulations. Proceedings of the International Astronomical Union, 2015, 11, 667-672.	0.0	0
67	CALIBRATION OF THE MIXING-LENGTH THEORY FOR CONVECTIVE WHITE DWARF ENVELOPES. Astrophysical Journal, 2015, 799, 142.	4.5	50
68	A NEW MERGING DOUBLE DEGENERATE BINARY IN THE SOLAR NEIGHBORHOOD. Astronomical Journal, 2015, 149, 176.	4.7	17
69	A MEASUREMENT OF DIFFUSION IN 47 TUCANAE. Astrophysical Journal, 2015, 804, 53.	4.5	19
70	INITIAL–FINAL MASS RELATION FOR 3 TO 4 <i>M</i> _⊙ PROGENITORS OF WHITE DWARFS FROM THE SINGLE CLUSTER NGC 2099. Astrophysical Journal, 2015, 807, 90.	4.5	23
71	Precise parameters for both white dwarfs in the eclipsing binary CSSÂ41177. Monthly Notices of the Royal Astronomical Society, 2014, 438, 3399-3408.	4.4	42
72	WHITE DWARF COSMOCHRONOLOGY IN THE SOLAR NEIGHBORHOOD. Astrophysical Journal, 2014, 791, 92.	4.5	68

#	Article	IF	Citations
73	WHITE DWARFS IN THE UKIRT INFRARED DEEP SKY SURVEY DATA RELEASE 9. Astrophysical Journal, 2014, 788, 103.	4.5	6
74	THE CORE MASS GROWTH AND STELLAR LIFETIME OF THERMALLY PULSING ASYMPTOTIC GIANT BRANCH STARS. Astrophysical Journal, 2014, 782, 17.	4.5	54
7 5	<i>Gaia</i> photometry for white dwarfs. Astronomy and Astrophysics, 2014, 565, A11.	5.1	45
76	Granulation properties of giants, dwarfs, and white dwarfs from the CIFIST 3D model atmosphere grid. Astronomy and Astrophysics, 2013, 557, A7.	5.1	57
77	Pure-hydrogen 3D model atmospheres of cool white dwarfs. Astronomy and Astrophysics, 2013, 552, A13.	5.1	41
78	The potential of 3D radiation-hydrodynamics models for white dwarf asteroseismology. EPJ Web of Conferences, 2013, 43, 05008.	0.3	0
79	Spectroscopic analysis of DA white dwarfs with 3D model atmospheres. Astronomy and Astrophysics, 2013, 559, A104.	5.1	156
80	THE SPECTRAL ENERGY DISTRIBUTIONS OF WHITE DWARFS IN 47 Tucanae: THE DISTANCE TO THE CLUSTER. Astronomical Journal, 2012, 143, 50.	4.7	47
81	AN EMPIRICAL MEASURE OF THE RATE OF WHITE DWARF COOLING IN 47 TUCANAE. Astrophysical Journal, 2012, 760, 78.	4.5	14
82	Spectroscopic and photometric studies of white dwarfs in the Hyades. Astronomy and Astrophysics, 2012, 547, A99.	5.1	16
83	The brightest pure-H ultracool white dwarf. Astronomy and Astrophysics, 2012, 546, L3.	5.1	8
84	COOL WHITE DWARFS FOUND IN THE UKIRT INFRARED DEEP SKY SURVEY. Astrophysical Journal, 2011, 735, 62.	4.5	13
85	AN IMPROVED SPECTROSCOPIC ANALYSIS OF DA WHITE DWARFS FROM THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 4. Astrophysical Journal, 2011, 730, 128.	4.5	359
86	Solution to the problem of the surface gravity distribution of cool DA white dwarfs from improved 3D model atmospheres. Astronomy and Astrophysics, 2011, 531, L19.	5.1	58
87	ABSOLUTE FLUX CALIBRATION OF THE IRAC INSTRUMENT ON THE <i>SPITZER SPACE TELESCOPE </i> I>USING <i>HUBBLE SPACE TELESCOPE </i> II>FLUX STANDARDS. Astronomical Journal, 2011, 141, 173.	4.7	28
88	NEW INSIGHTS INTO THE PROBLEM OF THE SURFACE GRAVITY DISTRIBUTION OF COOL DA WHITE DWARFS. Astrophysical Journal, 2010, 712, 1345-1358.	4.5	59
89	A DETAILED MODEL ATMOSPHERE ANALYSIS OF COOL WHITE DWARFS IN THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, Supplement Series, 2010, 190, 77-99.	7.7	48
90	SPECTROSCOPIC ANALYSIS OF DA WHITE DWARFS: STARK BROADENING OF HYDROGEN LINES INCLUDING NONIDEAL EFFECTS. Astrophysical Journal, 2009, 696, 1755-1770.	4.5	290

#	Article	IF	CITATIONS
91	Techniques and Review of Absolute Flux Calibration from the Ultraviolet to the Mid-Infrared. Publications of the Astronomical Society of the Pacific, 0, , 000-000.	3.1	125