Yuan-Chao Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2333536/publications.pdf

Version: 2024-02-01

25 1,079 16
papers citations h-index

25 g-index

25 25 all docs citations

25 times ranked 1182 citing authors

#	Article	IF	CITATIONS
1	Glass-forming ability of binary Lennard-Jones systems. Physical Review Materials, 2022, 6, .	2.4	3
2	Physical origin of glass formation from multicomponent systems. Science Advances, 2020, 6, .	10.3	37
3	High Entropy Intermetallic–Oxide Core–Shell Nanostructure as Superb Oxygen Evolution Reaction Catalyst. Advanced Sustainable Systems, 2020, 4, 1900105.	5. 3	129
4	Glass formation in binary alloys with different atomic symmetries. Physical Review Materials, 2020, 4, .	2.4	5
5	Functional Applications of Metallic Glasses in Electrocatalysis. ChemCatChem, 2019, 11, 2401-2414.	3.7	51
6	Quantitative characterization of mechano-biological interrelationships of single cells. International Journal of Advanced Manufacturing Technology, 2019, 105, 4967-4972.	3.0	4
7	Tuning the glass-forming ability of metallic glasses through energetic frustration. Physical Review Materials, 2019, 3, .	2.4	10
8	Common mechanism for controlling polymorph selection during crystallization in supercooled metallic liquids. Acta Materialia, 2018, 161, 367-373.	7.9	19
9	Shear-band affected zone revealed by magnetic domains in a ferromagnetic metallic glass. Nature Communications, 2018, 9, 4414.	12.8	62
10	Configuration correlation governs slow dynamics of supercooled metallic liquids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6375-6380.	7.1	43
11	Pressure effects on structure and dynamics of metallic glass-forming liquid. Journal of Chemical Physics, 2017, 146, 024507.	3.0	49
12	Five-fold local symmetry in metallic liquids and glasses. Chinese Physics B, 2017, 26, 016104.	1.4	19
13	The critical strain - A crossover from stochastic activation to percolation of flow units during stress relaxation in metallic glass. Scripta Materialia, 2017, 134, 75-79.	5.2	20
14	Effects of thermal aging on Fe ion-irradiated Fe–0.6%Cu alloy investigated by positron annihilation. Nuclear Science and Techniques/Hewuli, 2017, 28, 1.	3.4	1
15	Impact of spatial dimension on structural ordering in metallic glass. Physical Review E, 2017, 96, 022613.	2.1	9
16	Flexible strain sensors with high performance based on metallic glass thin film. Applied Physics Letters, 2017, 111, .	3.3	55
17	Hardening of shear band in metallic glass. Scientific Reports, 2017, 7, 7076.	3.3	15
18	Heterogeneity: the soul of metallic glasses. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 176112.	0.5	9

#	Article	IF	CITATIONS
19	Thermodynamic scaling of glassy dynamics and dynamic heterogeneities in metallic glass-forming liquid. Journal of Chemical Physics, 2016, 145, 104503.	3.0	18
20	A Highly Efficient and Selfâ€Stabilizing Metallicâ€Glass Catalyst for Electrochemical Hydrogen Generation. Advanced Materials, 2016, 28, 10293-10297.	21.0	195
21	Correlation between local elastic heterogeneities and overall elastic properties in metallic glasses. Acta Materialia, 2016, 121, 266-276.	7.9	41
22	Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations. Physical Review B, 2016, 93, .	3.2	39
23	Structural signatures evidenced in dynamic crossover phenomena in metallic glass-forming liquids. Journal of Applied Physics, 2016, 119, .	2.5	31
24	Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids. Nature Communications, 2015, 6, 8310.	12.8	206
25	Effect of Microstructural Evolution and Hardening in Subsurface on Wear Behavior of Mg-3Al-1Zn Alloy. Journal of Materials Engineering and Performance, 2013, 22, 3783-3791.	2.5	9