Irmgard Frank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2332906/publications.pdf

Version: 2024-02-01

567281 434195 48 996 15 31 citations h-index g-index papers 51 51 51 968 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular dynamics in low-spin excited states. Journal of Chemical Physics, 1998, 108, 4060-4069.	3.0	249
2	A Molecular Spring for Vision. Journal of the American Chemical Society, 2004, 126, 15328-15329.	13.7	98
3	Breaking Bonds by Mechanical Stress:  When Do Electrons Decide for the Other Side?. Journal of the American Chemical Society, 2002, 124, 3402-3406.	13.7	80
4	Restricted open-shell Kohn–Sham theory for π–π* transitions. I. Polyenes, cyanines, and protonated imines. Journal of Chemical Physics, 2003, 119, 11574-11584.	3.0	62
5	First-principles molecular dynamics study of a polymer under tensile stress. Journal of Chemical Physics, 2001, 115, 8670-8674.	3.0	48
6	First-Principles Simulation of the Photoreaction of a Capped Azobenzene: The Rotational Pathway is Feasible. ChemPhysChem, 2006, 7, 1455-1461.	2.1	36
7	Restricted open-shell Kohn–Sham theory for π–π* transitions. II. Simulation of photochemical reactions. Journal of Chemical Physics, 2003, 119, 11585-11590.	3.0	34
8	Ultrafast Cold Reactions in the Bipropellant Monomethylhydrazine/Nitrogen Tetroxide: CPMD Simulations. Angewandte Chemie - International Edition, 2004, 43, 4586-4589.	13.8	33
9	Restricted open-shell Kohn-Sham theory: Simulation of the pyrrole photodissociation. Journal of Chemical Physics, 2007, 126, 125105.	3.0	31
10	Disulfide Bond Cleavage: A Redox Reaction Without Electron Transfer. Chemistry - A European Journal, 2010, 16, 5097-5101.	3.3	29
11	Light-Driven Unidirectional Rotation in a Molecule: ROKS Simulation. ChemPhysChem, 2005, 6, 1943-1947.	2.1	26
12	Modified Chemistry of Siloxanes under Tensile Stress:Â Interaction with Environment. Journal of Physical Chemistry B, 2006, 110, 14557-14563.	2.6	22
13	The Formation of DNA Photodamage: The Role of Exciton Localization. ChemPhysChem, 2010, 11, 2011-2015.	2.1	21
14	CPMD Simulation of a Bimolecular Chemical Reaction: Nucleophilic Attack of a Disulfide Bond under Mechanical Stress. Chemistry - A European Journal, 2012, 18, 16332-16338.	3.3	19
15	Excited state dynamics in pyrrole–water clusters: First-principles simulation. Chemical Physics, 2008, 343, 347-352.	1.9	16
16	Mechanism of Electrocyclic Ringâ€Opening of Diphenyloxirane: 40 Years after Woodward and Hoffmann. Chemistry - A European Journal, 2009, 15, 10825-10829.	3.3	15
17	Origins of Material Failure in Siloxane Elastomers from First Principles. ChemPhysChem, 2009, 10, 119-123.	2.1	15
18	Conservation of Orbital Symmetry can be Circumvented in Mechanically Induced Reactions. ChemPhysChem, 2010, 11, 3339-3342.	2.1	15

#	Article	IF	CITATIONS
19	Solving restricted open-shell equations in excited state molecular dynamics simulations. Chemical Physics, 2008, 347, 17-24.	1.9	14
20	Molecular origins of adhesive failure: Siloxane elastomers pulled from a silica surface. Physical Review B, 2007, 76, .	3. 2	13
21	Electrolysis of Water in the Diffusion Layer: Firstâ€Principles Molecular Dynamics Simulation. Chemistry - A European Journal, 2012, 18, 277-282.	3.3	13
22	Breaking the rules. Nature Chemistry, 2009, 1, 264-265.	13.6	12
23	On the dynamics of H ₂ adsorption on the Pt(111) surface. International Journal of Quantum Chemistry, 2017, 117, e25407.	2.0	11
24	Chemische Reaktionen "on the fly― Angewandte Chemie, 2003, 115, 1607-1609.	2.0	6
25	Validating additive correction schemes against gradientâ€based extrapolations. International Journal of Quantum Chemistry, 2019, 119, e25953.	2.0	6
26	Deterministic quantum mechanics: The role of the Maxwell–Boltzmann distribution. International Journal of Quantum Chemistry, 2021, 121, e26555.	2.0	6
27	Breaking bonds at a stretch. Nature Chemistry, 2009, 1, 180-181.	13.6	5
28	Restricted open-shell Kohn–Sham theory: N unpaired electrons. Chemical Physics, 2010, 373, 283-288.	1.9	5
29	Formation and decay of tetrazane derivatives—a Car–Parrinello molecular dynamics study. Physical Chemistry Chemical Physics, 2008, 10, 4383.	2.8	4
30	Abâ€Initio Molecular Dynamics Simulation of the Electrolysis of Waste Water. ChemistrySelect, 2019, 4, 4376-4381.	1.5	4
31	Ammonia, water, and hydrogen: Can nuclear motion be described classically?. International Journal of Quantum Chemistry, 2020, 120, e26142.	2.0	4
32	Xeâ< OCS: relatively straightforward?. Physical Chemistry Chemical Physics, 2020, 22, 5615-5624.	2.8	4
33	Constrained Chemical Dynamics of CO Dissociation/Hydrogenation on Rh Surfaces. Chemistry - A European Journal, 2018, 24, 7188-7199.	3.3	3
34	The tardy dance of molecular orbitals. International Journal of Quantum Chemistry, 2018, 118, e25718.	2.0	3
35	Ladderenes: The mechanochemistry and the photochemistry of an exciting class of substances. Chemical Physics Letters, 2018, 702, 76-81.	2.6	3
36	Carbon Monoxide Playing Ping Pong with a Proton: The Movie. ChemistrySelect, 2019, 4, 868-872.	1.5	3

3

#	Article	IF	CITATIONS
37	Ab-Initio Molecular Dynamics Simulation of Condensed-Phase Reactivity: The Electrolysis of Amino Acids and Peptides. Molecules, 2020, 25, 5415.	3.8	3
38	Anionic Thia―Fries Rearrangement at Ferrocene: A Computational and Experimental Study. Helvetica Chimica Acta, 2021, 104, e2100025.	1.6	3
39	Classical nuclear motion: Does it fail to explain reactions and spectra in certain cases?. International Journal of Quantum Chemistry, 2022, 122, .	2.0	2
40	Car–Parrinello Molecular Dynamics Study of the Thermal Decomposition of Sodium Fulminate. Chemistry - A European Journal, 2010, 16, 8041-8046.	3.3	1
41	A singleâ€molecule reaction cascade: Firstâ€principles molecular dynamics simulation. International Journal of Quantum Chemistry, 2017, 117, e25395.	2.0	1
42	Modelling Vibrational Dissociation of [H ₂ –HCO] ⁺ . ChemistrySelect, 2019, 4, 9794-9801.	1.5	1
43	Ab-Initio Molecular Dynamics Simulation of the Electrolysis of Nucleobases. Energies, 2021, 14, 5021.	3.1	1
44	The First Reaction Steps of Lithium-Mediated Ammonia Synthesis: Ab Initio Simulation. Nitrogen, 2022, 3, 404-413.	1.3	1
45	Some simple facts about water: CPMD simulation. Molecular Physics, 2020, 118, e1802074.	1.7	O
46	Firstâ€Principles Simulation of Highly Reactive Systems: Immediacy on a Femtosecond Time Scale. ChemistrySelect, 2020, 5, 5109-5116.	1.5	0
47	Classical Motion of the Nuclei in a Molecule: A Concept Without Alternatives. ChemistrySelect, 2020, 5, 1872-1877.	1.5	0
48	Ab-Initio Molecular Dynamics Simulation of Condensed-Phase Reactivity: The Electrolysis of Ammonia and Ethanimine in Aquatic Carbon Dioxide Solutions. Energies, 2021, 14, 6510.	3.1	0