
Jordan D Ward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2332613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nature Methods, 2013, 10, 1028-1034.	19.0	905
2	The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in <i>C. elegans</i> . Development (Cambridge), 2015, 142, 4374-84.	2.5	453
3	RTEL1 Maintains Genomic Stability by Suppressing Homologous Recombination. Cell, 2008, 135, 261-271.	28.9	315
4	Preventing Nonhomologous End Joining Suppresses DNA Repair Defects of Fanconi Anemia. Molecular Cell, 2010, 39, 25-35.	9.7	264
5	HTP-3 Links DSB Formation with Homolog Pairing and Crossing Over during C. elegans Meiosis. Developmental Cell, 2008, 14, 263-274.	7.0	195
6	Rapid and Precise Engineering of the <i>Caenorhabditis elegans</i> Genome with Lethal Mutation Co-Conversion and Inactivation of NHEJ Repair. Genetics, 2015, 199, 363-377.	2.9	194
7	RTEL-1 Enforces Meiotic Crossover Interference and Homeostasis. Science, 2010, 327, 1254-1258.	12.6	155
8	Rad51 Paralogs Remodel Pre-synaptic Rad51 Filaments to Stimulate Homologous Recombination. Cell, 2015, 162, 271-286.	28.9	128
9	HCLK2 is essential for the mammalian S-phase checkpoint and impacts on Chk1 stability. Nature Cell Biology, 2007, 9, 391-401.	10.3	111
10	Germline Signals Deploy NHR-49 to Modulate Fatty-Acid β-Oxidation and Desaturation in Somatic Tissues of C. elegans. PLoS Genetics, 2014, 10, e1004829.	3.5	109
11	DOG-1 Is the <i>Caenorhabditis elegans</i> BRIP1/FANCJ Homologue and Functions in Interstrand Cross-Link Repair. Molecular and Cellular Biology, 2008, 28, 1470-1479.	2.3	99
12	BRCâ€l acts in the interâ€sister pathway of meiotic doubleâ€strand break repair. EMBO Reports, 2008, 9, 287-292.	4.5	92
13	An expanded auxin-inducible degron toolkit for <i>Caenorhabditis elegans</i> . Genetics, 2021, 217, .	2.9	88
14	Overlapping Mechanisms Promote Postsynaptic RAD-51 Filament Disassembly during Meiotic Double-Strand Break Repair. Molecular Cell, 2010, 37, 259-272.	9.7	85
15	Nuclear hormone receptors in nematodes: Evolution and function. Molecular and Cellular Endocrinology, 2011, 334, 49-55.	3.2	84
16	Replication blocking lesions present a unique substrate for homologous recombination. EMBO Journal, 2007, 26, 3384-3396.	7.8	77
17	Activation of the Cpx Envelope Stress Response Down-Regulates Expression of Several Locus of Enterocyte Effacement-Encoded Genes in Enteropathogenic <i>Escherichia coli</i> . Infection and Immunity, 2008, 76, 1465-1475.	2.2	73
18	Joint Molecule Resolution Requires the Redundant Activities of MUS-81 and XPF-1 during Caenorhabditis elegans Meiosis. PLoS Genetics, 2013, 9, e1003582.	3.5	65

JORDAN D WARD

#	Article	IF	CITATIONS
19	Rapid Degradation of <i>Caenorhabditis elegans</i> Proteins at Single-Cell Resolution with a Synthetic Auxin. G3: Genes, Genomes, Genetics, 2020, 10, 267-280.	1.8	64
20	C. elegans FANCD2 responds to replication stress and functions in interstrand cross-link repair. DNA Repair, 2006, 5, 1398-1406.	2.8	60
21	Rendering the Intractable More Tractable: Tools from <i>Caenorhabditis elegans</i> Ripe for Import into Parasitic Nematodes. Genetics, 2015, 201, 1279-1294.	2.9	47
22	Sumoylated NHR-25/NR5A Regulates Cell Fate during C. elegans Vulval Development. PLoS Genetics, 2013, 9, e1003992.	3.5	36
23	Defects in the C. elegans acyl-CoA Synthase, acs-3, and Nuclear Hormone Receptor, nhr-25, Cause Sensitivity to Distinct, but Overlapping Stresses. PLoS ONE, 2014, 9, e92552.	2.5	35
24	An engineered, orthogonal auxin analog/ <i>At</i> TIR1(F79G) pairing improves both specificity and efficacy of the auxin degradation system in <i>Caenorhabditis elegans</i> . Genetics, 2022, 220, .	2.9	28
25	A New Tool for Inducible Gene Expression in <i>Caenorhabditis elegans</i> . Genetics, 2019, 211, 419-430.	2.9	18
26	The conserved molting/circadian rhythm regulator NHR-23/NR1F1 serves as an essential co-regulator of <i>C. elegans</i> spermatogenesis. Development (Cambridge), 2020, 147, .	2.5	18
27	Generation of a restriction minus enteropathogenic Escherichia coli E2348/69 strain that is efficiently transformed with large, low copy plasmids. BMC Microbiology, 2008, 8, 134.	3.3	10
28	Nuclear hormone receptors as mediators of metabolic adaptability following reproductive perturbations. Worm, 2016, 5, e1151609.	1.0	8
29	Spotlight on CRISPR in Strongyloides Parasitic Nematodes. Trends in Parasitology, 2018, 34, 6-9.	3.3	6
30	SUMO as a nuclear hormone receptor effector. Worm, 2014, 3, e29317.	1.0	2
31	Efficient generation of a single-copy allele in the insertion site through recombination-mediated cassette exchange. MicroPublication Biology, 2021, 2021, .	0.1	1
32	MFP1/MSD-1 and MFP2/NSPH-2 co-localize with MSP during spermatogenesis. MicroPublication Biology, 2021, 2021, .	0.1	0