Ai-Yun Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2332574/publications.pdf

Version: 2024-02-01

759233 610901 33 579 12 24 h-index citations g-index papers 41 41 41 502 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inhibition of Quorum-Sensing Regulator from Pseudomonas aeruginosa Using a Flavone Derivative. Molecules, 2022, 27, 2439.	3.8	8
2	Efficient Synthesis of Phosphorus/Nitrogen ontaining Chrysin Derivatives via Classic Reactions. ChemistrySelect, 2021, 6, 415-418.	1.5	3
3	Efficient Synthesis of Phosphonamidates through Oneâ€Pot Sequential Reactions of Phosphonites with lodine and Amines. Chemistry - A European Journal, 2020, 26, 14474-14480.	3.3	4
4	Copolymerization of azide-containing carbonate with lactide and post functionalization. Journal of Polymer Research, 2020, 27, 1.	2.4	2
5	Transcriptome analysis of three cultivars of <i>Poria cocos</i> reveals genes related to the biosynthesis of polysaccharides. Journal of Asian Natural Products Research, 2019, 21, 462-475.	1.4	9
6	Palladium(II) Acetate Catalyzed Cyclization–Coupling of (o-Ethynylphenyl)phosphonic Acid Monoesters with Allyl Halides. Synthesis, 2019, 51, 3499-3505.	2.3	5
7	Bromine-functionalized poly(carbonate-co-lactide)s: Synthesis, characterization and post-polymerization functionalization. Polymer, 2019, 180, 121705.	3.8	5
8	Reinvestigation of the iodine-mediated phosphoramidation reaction of amines and P(OR) ₃ and its synthetic applications. Organic and Biomolecular Chemistry, 2018, 16, 6783-6790.	2.8	16
9	Thermally Stable White Emitting Eu ³⁺ Complex@Nanozeolite@Luminescent Glass Composite with High CRI for Organic-Resin-Free Warm White LEDs. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7272-7281.	8.0	42
10	Synthesis of phostones via DABCO-catalyzed bromocyclization of alkenylphosphonic acid monoesters. Organic and Biomolecular Chemistry, 2017, 15, 7396-7403.	2.8	9
11	A mild and efficient amide formation reaction mediated by P(OEt)3 and iodine. RSC Advances, 2015, 5, 94328-94331.	3.6	5
12	Synthesis of phosphaisocoumarin amidates via DIBAL-H-mediated selective amidation of phosphaisocoumarin esters. Organic and Biomolecular Chemistry, 2014, 12, 5458-5463.	2.8	2
13	Synthesis of Haloâ€Enol Phostones by Using DMAPâ€Catalyzed Halocyclization of Alkynylphosphonic Monoesters. European Journal of Organic Chemistry, 2014, 2014, 8126-8132.	2.4	13
14	Synthesis and biological evaluation of phosphorylated flavonoids as potent and selective inhibitors of cholesterol esterase. European Journal of Medicinal Chemistry, 2014, 74, 751-758.	5.5	19
15	Inhibition of porcine liver carboxylesterase by phosphorylated flavonoids. Chemico-Biological Interactions, 2013, 204, 75-79.	4.0	9
16	An efficient synthesis of 2-(1-(E)-alkenyl)phenylphosphonates via Suzuki reaction of aryl nonaflates with (E)-1-alkenylboronates. Journal of Fluorine Chemistry, 2013, 151, 58-62.	1.7	2
17	A new synthesis of fully phosphorylated flavones as potent pancreatic cholesterol esterase inhibitors. Organic and Biomolecular Chemistry, 2011, 9, 2530.	2.8	12
18	Pd(0)/iodide salt-mediated Heck reaction of aryl nonaflates: Application to the synthesis of 2-(1-alkenyl)phenylphosphonates. Journal of Fluorine Chemistry, 2011, 132, 982-986.	1.7	9

#	Article	IF	CITATIONS
19	Acid/baseâ€catalyzed cyclization of Oâ€alkynylphenylphosphonic acid monoesters and (Oâ€hydroxyphenyl)ethynylphosphinates. Heteroatom Chemistry, 2011, 22, 649-652.	0.7	4
20	Phosphaisocoumarins as a new class of potent inhibitors for pancreatic cholesterol esterase. European Journal of Medicinal Chemistry, 2010, 45, 1955-1963.	5.5	60
21	Alcoholysis of Phosphaisocoumarins and Synthesis of 2â€(2â€Oxoalkyl)phenylphosphonates. European Journal of Organic Chemistry, 2008, 2008, 5277-5282.	2.4	6
22	An Efficient Route to 4-Halophosphaisocoumarins via CuX ₂ -Mediated Direct Halocyclization of 2-(1-Alkynyl)phenylphosphonic Acid Diesters. Journal of Organic Chemistry, 2008, 73, 9012-9015.	3.2	34
23	Synthesis and Reactions of Phosphaisocoumarins. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 665-666.	1.6	1
24	Synthesis of Phosphaisocoumarin Acids via Me3SiX-Mediated Dealkylation Reaction. Synthesis, 2008, 2008, 2412-2416.	2.3	15
25	Synthesis of 4-Halophosphaisocoumarins via Halocyclization of 2-(1-Alkynyl)phenylphosphonates ChemInform, 2006, 37, no.	0.0	0
26	Synthesis of 4-halophosphaisocoumarins via halocyclization of 2-(1-alkynyl)phenylphosphonates. Tetrahedron, 2005, 61, 10303-10308.	1.9	27
27	A convenient and applicable route to synthesize 2-(1-alkynyl)phenylphosphonates. Heteroatom Chemistry, 2005, 16, 529-534.	0.7	25
28	Synthesis of 2-H-1,2-Oxaphosphorin 2-Oxides via Ag2CO3-Catalyzed Cyclization of (Z)-2-Alken-4-ynylphosphonic Monoesters ChemInform, 2005, 36, no.	0.0	0
29	Synthesis of 2H-1,2-Oxaphosphorin 2-Oxides via Ag2CO3-Catalyzed Cyclization of (Z)-2-Alken-4-ynylphosphonic Monoesters. Organic Letters, 2005, 7, 3299-3301.	4.6	57
30	The Synthesis of Phosphaisocoumarins by Cu(I)-Catalyzed Intramolecular Cyclization of o-Ethynylphenylphosphonic Acid Monoesters ChemInform, 2004, 35, no.	0.0	0
31	Synthesis of Phosphaisocoumarins via Iodocyclization ChemInform, 2004, 35, no.	0.0	0
32	Synthesis of Phosphaisocoumarins via Iodocyclization. Organic Letters, 2004, 6, 1119-1121.	4.6	83
33	The Synthesis of Phosphaisocoumarins by Cu(I)-Catalyzed Intramolecular Cyclization ofo-Ethynylphenylphosphonic Acid Monoesters. Journal of the American Chemical Society, 2003, 125, 15006-15007.	13.7	93