Jian Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2332372/publications.pdf

Version: 2024-02-01

		10956	21474
348	18,039	71	114
papers	citations	h-index	g-index
354	354	354	20409
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
2	Mussel-Inspired Polydopamine: A Biocompatible and Ultrastable Coating for Nanoparticles <i>iin Vivo</i> . ACS Nano, 2013, 7, 9384-9395.	7.3	549
3	Surface-Adaptive Gold Nanoparticles with Effective Adherence and Enhanced Photothermal Ablation of Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilm. ACS Nano, 2017, 11, 9330-9339.	7.3	462
4	Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials, 2005, 26, 6684-6692.	5.7	426
5	CuSO ₄ /H ₂ O ₂ â€Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability. Angewandte Chemie - International Edition, 2016, 55, 3054-3057.	7.2	403
6	Surface Charge Switchable Supramolecular Nanocarriers for Nitric Oxide Synergistic Photodynamic Eradication of Biofilms. ACS Nano, 2020, 14, 347-359.	7.3	321
7	Enhanced Retention and Cellular Uptake of Nanoparticles in Tumors by Controlling Their Aggregation Behavior. ACS Nano, 2013, 7, 6244-6257.	7.3	309
8	In situ endothelialization of intravascular stents coated with an anti-CD34 antibody functionalized heparin–collagen multilayer. Biomaterials, 2010, 31, 4017-4025.	5.7	215
9	Size and Charge Adaptive Clustered Nanoparticles Targeting the Biofilm Microenvironment for Chronic Lung Infection Management. ACS Nano, 2020, 14, 5686-5699.	7.3	199
10	Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. Journal of Biomedical Materials Research - Part A, 2006, 79A, 665-674.	2.1	197
11	Nitric oxide as an all-rounder for enhanced photodynamic therapy: Hypoxia relief, glutathione depletion and reactive nitrogen species generation. Biomaterials, 2018, 187, 55-65.	5.7	191
12	Surface and Size Effects on Cell Interaction of Gold Nanoparticles with Both Phagocytic and Nonphagocytic Cells. Langmuir, 2013, 29, 9138-9148.	1.6	183
13	Electropolymerization of dopamine for surface modification of complex-shaped cardiovascular stents. Biomaterials, 2014, 35, 7679-7689.	5.7	183
14	Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chemical Engineering Journal, 2019, 358, 74-90.	6.6	170
15	Surface engineering of cardiovascular stent with endothelial cell selectivity for inÂvivo re-endothelialisation. Biomaterials, 2013, 34, 2588-2599.	5.7	168
16	Dual Enzymatic Reaction-Assisted Gemcitabine Delivery Systems for Programmed Pancreatic Cancer Therapy. ACS Nano, 2017, 11, 1281-1291.	7.3	160
17	Fabrication of a Superhydrophobic Surface from the Amplified Exponential Growth of a Multilayer. Advanced Materials, 2006, 18, 1441-1444.	11.1	159
18	Rational Design of Cancer Nanomedicine for Simultaneous Stealth Surface and Enhanced Cellular Uptake. ACS Nano, 2019, 13, 954-977.	7.3	156

#	Article	IF	CITATIONS
19	Metformin-Induced Stromal Depletion to Enhance the Penetration of Gemcitabine-Loaded Magnetic Nanoparticles for Pancreatic Cancer Targeted Therapy. Journal of the American Chemical Society, 2020, 142, 4944-4954.	6.6	153
20	Polyphenol-Assisted Exfoliation of Transition Metal Dichalcogenides into Nanosheets as Photothermal Nanocarriers for Enhanced Antibiofilm Activity. ACS Nano, 2018, 12, 12347-12356.	7.3	147
21	Layerâ€byâ€Layerâ€Assembled Healable Antifouling Films. Advanced Materials, 2015, 27, 5882-5888.	11.1	145
22	Synthesis of Nearâ€Infrared Responsive Gold Nanorod/PNIPAAm Core/Shell Nanohybrids via Surface Initiated ATRP for Smart Drug Delivery. Macromolecular Rapid Communications, 2008, 29, 645-650.	2.0	133
23	Construction and enzymatic degradation of multilayered poly-l-lysine/DNA films. Biomaterials, 2006, 27, 1152-1159.	5.7	131
24	Novel biomimetic polymersomes as polymer therapeutics for drug delivery. Journal of Controlled Release, 2005, 107, 502-512.	4.8	130
25	Fluorescence detection of alkaline phosphatase activity with \hat{l}^2 -cyclodextrin-modified quantum dots. Chemical Communications, 2010, 46, 7166.	2.2	130
26	Asymmetric Free-Standing Film with Multifunctional Anti-Bacterial and Self-Cleaning Properties. ACS Applied Materials & Diterraces, 2012, 4, 4476-4483.	4.0	129
27	Zwitterionic drug nanocarriers: A biomimetic strategy for drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 124, 80-86.	2.5	128
28	Synergistic Chemotherapy and Photodynamic Therapy of Endophthalmitis Mediated by Zeolitic Imidazolate Frameworkâ€Based Drug Delivery Systems. Small, 2019, 15, e1903880.	5.2	122
29	Construction of Degradable Multilayer Films for Enhanced Antibacterial Properties. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4136-4143.	4.0	117
30	CuSO ₄ /H ₂ O ₂ â€Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability. Angewandte Chemie, 2016, 128, 3106-3109.	1.6	117
31	Dopamine-Triggered One-Step Polymerization and Codeposition of Acrylate Monomers for Functional Coatings. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34356-34366.	4.0	114
32	Photo-responsive, biocompatible polymeric micelles self-assembled from hyperbranched polyphosphate-based polymers. Polymer Chemistry, 2011, 2, 1389.	1.9	112
33	IR-780 Loaded Phospholipid Mimicking Homopolymeric Micelles for Near-IR Imaging and Photothermal Therapy of Pancreatic Cancer. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6852-6858.	4.0	111
34	Albumin and fibrinogen adsorption on PU–PHEMA surfaces. Biomaterials, 2003, 24, 2067-2076.	5.7	110
35	Combining 3D Printing with Electrospinning for Rapid Response and Enhanced Designability of Hydrogel Actuators. Advanced Functional Materials, 2018, 28, 1800514.	7.8	108
36	Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant. Biomaterials, 2003, 24, 4699-4705.	5.7	106

#	Article	IF	CITATIONS
37	Zwitterionic phosphorylcholine as a better ligand for gold nanorods cell uptake and selective photothermal ablation of cancer cells. Chemical Communications, 2010, 46, 1479.	2.2	106
38	pH-Amplified Exponential Growth Multilayers: A Facile Method to Develop Hierarchical Micro- and Nanostructured Surfaces. Langmuir, 2009, 25, 672-675.	1.6	105
39	Fast and long-acting antibacterial properties of chitosan-Ag/polyvinylpyrrolidone nanocomposite films. Carbohydrate Polymers, 2012, 90, 8-15.	5.1	105
40	Zwitterionic Phosphorylcholine–TPE Conjugate for pH-Responsive Drug Delivery and AIE Active Imaging. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21185-21192.	4.0	105
41	3-Bromopyruvate-Conjugated Nanoplatform-Induced Pro-Death Autophagy for Enhanced Photodynamic Therapy against Hypoxic Tumor. ACS Nano, 2020, 14, 9711-9727.	7.3	105
42	Immobilization of natural macromolecules on poly-L-lactic acid membrane surface in order to improve its cytocompatibility. Journal of Biomedical Materials Research Part B, 2002, 63, 838-847.	3.0	104
43	pH―and NIR Lightâ€Responsive Polymeric Prodrug Micelles for Hyperthermiaâ€Assisted Siteâ€Specific Chemotherapy to Reverse Drug Resistance in Cancer Treatment. Small, 2016, 12, 2731-2740.	5.2	102
44	Polydopamine Nanocoating for Effective Photothermal Killing of Bacteria and Fungus upon Nearâ€Infrared Irradiation. Advanced Materials Interfaces, 2016, 3, 1600767.	1.9	99
45	Interaction of Zoospores of the Green Alga <i>Ulva</i> with Bioinspired Micro†and Nanostructured Surfaces Prepared by Polyelectrolyte Layerâ€byâ€Layer Selfâ€Assembly. Advanced Functional Materials, 2010, 20, 1984-1993.	7.8	98
46	Supramolecular Aggregation-Induced Emission Nanodots with Programmed Tumor Microenvironment Responsiveness for Image-Guided Orthotopic Pancreatic Cancer Therapy. ACS Nano, 2020, 14, 5121-5134.	7.3	98
47	Protein immobilization on the surface of poly-L-lactic acid films for improvement of cellular interactions. European Polymer Journal, 2002, 38, 2279-2284.	2.6	96
48	ATP Suppression by pHâ€Activated Mitochondriaâ€Targeted Delivery of Nitric Oxide Nanoplatform for Drug Resistance Reversal and Metastasis Inhibition. Small, 2020, 16, e2001747.	5.2	95
49	Biocompatible and biodegradable polymersomes as delivery vehicles in biomedical applications. Soft Matter, 2012, 8, 8811.	1.2	94
50	Multidentate Polyethylene Glycol Modified Gold Nanorods for in Vivo Near-Infrared Photothermal Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2014, 6, 5657-5668.	4.0	94
51	Micelles and reverse micelles with a photo and thermo doubleâ€responsive block copolymer. Journal of Polymer Science Part A, 2010, 48, 2855-2861.	2.5	91
52	Biofilm microenvironment activated supramolecular nanoparticles for enhanced photodynamic therapy of bacterial keratitis. Journal of Controlled Release, 2020, 327, 676-687.	4.8	91
53	Label-free fluorescence detection of mercury(ii) and glutathione based on Hg2+-DNA complexes stimulating aggregation-induced emission of a tetraphenylethene derivative. Analyst, The, 2010, 135, 3002.	1.7	90
54	Rings of Nanoparticle-Decorated Honeycomb-Structured Polymeric Film: The Combination of Pickering Emulsions and Capillary Flow in the Breath Figures Method. Langmuir, 2008, 24, 11338-11341.	1.6	89

#	Article	IF	CITATIONS
55	Tailoring Supramolecular Prodrug Nanoassemblies for Reactive Nitrogen Species-Potentiated Chemotherapy of Liver Cancer. ACS Nano, 2021, 15, 8663-8675.	7.3	87
56	Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.	4.2	85
57	Design of smart targeted and responsive drug delivery systems with enhanced antibacterial properties. Nanoscale, 2018, 10, 20946-20962.	2.8	84
58	Near-infrared light-sensitive micelles for enhanced intracellular drug delivery. Journal of Materials Chemistry, 2012, 22, 16865.	6.7	82
59	Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy. Nanoscale, 2016, 8, 283-291.	2.8	82
60	Ultrathin κ-Carrageenan/Chitosan Hydrogel Films with High Toughness and Antiadhesion Property. ACS Applied Materials & Diterfaces, 2018, 10, 9002-9009.	4.0	82
61	Tunable DNA Release from Cross-Linked Ultrathin DNA/PLL Multilayered Films. Bioconjugate Chemistry, 2006, 17, 77-83.	1.8	82
62	Zwitterionic polycarboxybetaine coating functionalized with REDV peptide to improve selectivity for endothelial cells. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1387-1397.	2.1	81
63	Different complex surfaces of polyethyleneglycol (PEG) and REDV ligand to enhance the endothelial cells selectivity over smooth muscle cells. Colloids and Surfaces B: Biointerfaces, 2011, 84, 369-378.	2.5	80
64	Relief of Biofilm Hypoxia Using an Oxygen Nanocarrier: A New Paradigm for Enhanced Antibiotic Therapy. Advanced Science, 2020, 7, 2000398.	5.6	80
65	Surface engineering of poly(dl-lactic acid) by entrapment of alginate-amino acid derivatives for promotion of chondrogenesis. Biomaterials, 2002, 23, 3141-3148.	5.7	79
66	Biocompatible vesicles based on PEO-b-PMPC/ \hat{l} ±-cyclodextrin inclusion complexes for drug delivery. Soft Matter, 2011, 7, 662-669.	1.2	79
67	Mixed Charged Zwitterionic Self-Assembled Monolayers as a Facile Way to Stabilize Large Gold Nanoparticles. Langmuir, 2011, 27, 5242-5251.	1.6	78
68	Mixedâ€Charge Nanoparticles for Long Circulation, Low Reticuloendothelial System Clearance, and High Tumor Accumulation. Advanced Healthcare Materials, 2014, 3, 1439-1447.	3.9	77
69	A facile method to construct hybrid multilayered films as a strong and multifunctional antibacterial coating. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 85B, 556-563.	1.6	75
70	Photo-responsive supramolecular self-assembly and disassembly of an azobenzene-containing block copolymer. Soft Matter, 2010, 6, 5589.	1.2	75
71	Nitric oxide-induced stromal depletion for improved nanoparticle penetration in pancreatic cancer treatment. Biomaterials, 2020, 246, 119999.	5.7	75
72	Surface modification of poly-L-lactide by photografting of hydrophilic polymers towards improving its hydrophilicity. Journal of Applied Polymer Science, 2002, 85, 2163-2171.	1.3	74

#	Article	IF	CITATIONS
73	Zwitterionic phosphorylcholine as a better ligand for stabilizing large biocompatible gold nanoparticles. Chemical Communications, 2008, , 3058.	2.2	73
74	Biomacromolecules Electrostatic Self-Assembly on 3-Dimensional Tissue Engineering Scaffold. Biomacromolecules, 2004, 5, 1933-1939.	2.6	72
75	A biomimic pH-sensitive polymeric prodrug based on polycarbonate for intracellular drug delivery. Polymer Chemistry, 2014, 5, 854-861.	1.9	71
76	Humidityâ€Triggered Selfâ€Healing of Microporous Polyelectrolyte Multilayer Coatings for Hydrophobic Drug Delivery. Advanced Functional Materials, 2015, 25, 7470-7477.	7.8	70
77	Bactericidal and Hemocompatible Coating via the Mixed-Charged Copolymer. ACS Applied Materials & Long Representation (2018), 10, 10428-10436.	4.0	70
78	The rational design of a gemcitabine prodrug with AIE-based intracellular light-up characteristics for selective suppression of pancreatic cancer cells. Chemical Communications, 2015, 51, 17435-17438.	2.2	68
79	Emerging antibacterial nanomedicine for enhanced antibiotic therapy. Biomaterials Science, 2020, 8, 6825-6839.	2.6	68
80	Direct Adhesion of Endothelial Cells to Bioinspired Poly(dopamine) Coating Through Endogenous Fibronectin and Integrin \hat{l}_{\pm} _{\hat{l}_{\pm}_{$\hat{l}_$}}	2.1	67
81	Design and Proof of Programmed 5-Aminolevulinic Acid Prodrug Nanocarriers for Targeted Photodynamic Cancer Therapy. ACS Applied Materials & Empty Service (1988) 14596-14605.	4.0	66
82	BSAâ \in "tetraphenylethene derivative conjugates with aggregation-induced emission properties: Fluorescent probes for label-free and homogeneous detection of protease and $\hat{l}\pm 1$ -antitrypsin. Analyst, The, 2011, 136, 2315.	1.7	65
83	Glutathione Activatable Photosensitizerâ€Conjugated Pseudopolyrotaxane Nanocarriers for Photodynamic Theranostics. Small, 2016, 12, 6223-6232.	5.2	65
84	Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized titania nanospikes. Biomaterials Science, 2020, 8, 278-289.	2.6	65
85	Novel Biomimetic Surfactant: Synthesis and Micellar Characteristics. Macromolecular Bioscience, 2005, 5, 164-171.	2.1	64
86	Particle-assisted fabrication of honeycomb-structured hybrid films via breath figures method. Polymer, 2010, 51, 4169-4175.	1.8	64
87	pH-Amplified Multilayer Films Based on Hyaluronan: Influence of HA Molecular Weight and Concentration on Film Growth and Stability. Biomacromolecules, 2011, 12, 1322-1331.	2.6	64
88	Heparin/collagen multilayer as a thromboresistant and endothelial favorable coating for intravascular stent. Journal of Biomedical Materials Research - Part A, 2011, 96A, 132-141.	2.1	63
89	Bioinspired phospholipid polymer prodrug as a pH-responsive drug delivery system for cancer therapy. Polymer Chemistry, 2013, 4, 2004.	1.9	63
90	Let There be Light: Polymeric Micelles with Upper Critical Solution Temperature as Lightâ€Triggered Heat Nanogenerators for Combating Drugâ€Resistant Cancer. Small, 2018, 14, e1802420.	5.2	63

#	Article	IF	Citations
91	Photosensitizer-Loaded Multifunctional Chitosan Nanoparticles for Simultaneous in Situ Imaging, Highly Efficient Bacterial Biofilm Eradication, and Tumor Ablation. ACS Applied Materials & Discrete Representation, and Tumor Ablation. ACS Applied Materials & Discrete Representation of the Photoseph Photosep	4.0	63
92	Surface Engineering of Poly(dl-lactide) via Electrostatic Self-Assembly of Extracellular Matrix-like Molecules. Biomacromolecules, 2003, 4, 378-386.	2.6	62
93	Construction of High Drug Loading and Enzymatic Degradable Multilayer Films for Self-Defense Drug Release and Long-Term Biofilm Inhibition. Biomacromolecules, 2018, 19, 85-93.	2.6	62
94	Ofloxacin loaded MoS2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria. Nano Research, 2020, 13, 2340-2350.	5.8	62
95	Preparation of reversibly photo-cross-linked nanogels from pH-responsive block copolymers and use as nanoreactors for the synthesis of gold nanoparticles. European Polymer Journal, 2010, 46, 2120-2128.	2.6	61
96	Doxorubicin conjugated phospholipid prodrugs as smart nanomedicine platforms for cancer therapy. Journal of Materials Chemistry B, 2015, 3, 3297-3305.	2.9	60
97	Minimizing nonspecific phagocytic uptake of biocompatible gold nanoparticles with mixed charged zwitterionic surface modification. Journal of Materials Chemistry, 2012, 22, 1916-1927.	6.7	58
98	Hyaluronic acid and chitosan-DNA complex multilayered thin film as surface-mediated nonviral gene delivery system. Colloids and Surfaces B: Biointerfaces, 2009, 74, 298-303.	2.5	57
99	Biomimetic pseudopolyrotaxane prodrug micelles with high drug content for intracellular drug delivery. Chemical Communications, 2013, 49, 7123.	2.2	57
100	Effect of Polyelectrolyte Film Stiffness on Endothelial Cells During Endothelial-to-Mesenchymal Transition. Biomacromolecules, 2015, 16, 3584-3593.	2.6	57
101	The Escherichia coli O157:H7 DNA detection on a gold nanoparticle-enhanced piezoelectric biosensor. Science Bulletin, 2008, 53, 1175-1184.	4.3	56
102	Rapid and Sensitive Detection of Foodborne Pathogenic Bacteria (<i>Staphylococcus aureus</i>) Using an Electrochemical DNA Genomic Biosensor and Its Application in Fresh Beef. Journal of Agricultural and Food Chemistry, 2014, 62, 12659-12667.	2.4	56
103	Construction and deconstruction of PLL/DNA multilayered films for DNA delivery: Effect of ionic strength. Colloids and Surfaces B: Biointerfaces, 2005, 46, 63-69.	2.5	55
104	Biocompatible and biodegradable polymersomes for pH-triggered drug release. Soft Matter, 2011, 7, 6629.	1.2	55
105	Reversibly light-responsive micelles constructed via a simple modification of hyperbranched polymers with chromophores. Polymer, 2012, 53, 3695-3703.	1.8	54
106	Photothermal Killing of Methicillin-Resistant <i>Staphylococcus aureus</i> by Bacteria-Targeted Polydopamine Nanoparticles with Nano-Localized Hyperpyrexia. ACS Biomaterials Science and Engineering, 2019, 5, 5169-5179.	2.6	54
107	Layer-by-layer assembly as a robust method to construct extracellular matrix mimic surfaces to modulate cell behavior. Progress in Polymer Science, 2019, 92, 1-34.	11.8	54
108	Fabrication of Mixed-Charge Polypeptide Coating for Enhanced Hemocompatibility and Anti-Infective Effect. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2999-3010.	4.0	53

#	Article	IF	CITATIONS
109	Facile fabrication of robust superhydrophobic multilayered film based on bioinspired poly(dopamine)-modified carbon nanotubes. Physical Chemistry Chemical Physics, 2014, 16, 2936.	1.3	51
110	pH-responsive and biodegradable polymeric micelles based on poly(β-amino) Tj ETQq0 0 0 rgBT /Overlock 10 Tf	50 <u>7</u> 92 Td	(ester)-graft
111	Polyamidoamine dendrimers surface-engineered with biomimetic phosphorylcholine as potential drug delivery carriers. Colloids and Surfaces B: Biointerfaces, 2011, 84, 49-54.	2.5	49
112	"Mixed-charge Self-Assembled Monolayers―as A Facile Method to Design pH-induced Aggregation of Large Gold Nanoparticles for Near-Infrared Photothermal Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18930-18937.	4.0	49
113	Bacteriaâ€Targeted Supramolecular Photosensitizer Delivery Vehicles for Photodynamic Ablation Against Biofilms. Macromolecular Rapid Communications, 2019, 40, e1800763.	2.0	49
114	Enzyme-sensitive gemcitabine conjugated albumin nanoparticles as a versatile theranostic nanoplatform for pancreatic cancer treatment. Journal of Colloid and Interface Science, 2017, 507, 217-224.	5.0	48
115	Zwitterionic stealth peptide-protected gold nanoparticles enable long circulation without the accelerated blood clearance phenomenon. Biomaterials Science, 2018, 6, 200-206.	2.6	48
116	Magainin-modified polydopamine nanoparticles for photothermal killing of bacteria at low temperature. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110423.	2.5	48
117	Synchronously boosting type-I photodynamic and photothermal efficacies via molecular manipulation for pancreatic cancer theranostics in the NIR-II window. Biomaterials, 2022, 283, 121476.	5 . 7	48
118	Surface-mediated functional gene delivery: An effective strategy for enhancing competitiveness of endothelial cells over smooth muscle cells. Biomaterials, 2013, 34, 3345-3354.	5.7	47
119	Surface Tailoring of Nanoparticles via Mixedâ€Charge Monolayers and Their Biomedical Applications. Small, 2014, 10, 4230-4242.	5.2	47
120	Bioinspired Polydopamine/Polyzwitterion Coatings for Underwater Anti-Oil and -Freezing Surfaces. Langmuir, 2019, 35, 1895-1901.	1.6	47
121	Polymyxin Bâ€Polysaccharide Polyion Nanocomplex with Improved Biocompatibility and Unaffected Antibacterial Activity for Acute Lung Infection Management. Advanced Healthcare Materials, 2020, 9, e1901542.	3.9	45
122	Surface coating of stearyl poly(ethylene oxide) coupling-polymer on polyurethane guiding catheters with poly(ether urethane) film-building additive for biomedical applications. Biomaterials, 2001, 22, 1549-1562.	5.7	44
123	Phenylboronic acid as a sugar- and pH-responsive trigger to tune the multiple micellization of thermo-responsive block copolymer. Polymer, 2010, 51, 3068-3074.	1.8	44
124	Selective endothelial cells adhesion to Arg-Glu-Asp-Val peptide functionalized polysaccharide multilayer. Thin Solid Films, 2012, 520, 4971-4978.	0.8	44
125	Octadecyl Chains Immobilized onto Hyaluronic Acid Coatings by Thiol–ene "Click Chemistry―Increase the Surface Antimicrobial Properties and Prevent Platelet Adhesion and Activation to Polyurethane. ACS Applied Materials & Diterfaces, 2017, 9, 7979-7989.	4.0	44
126	Pillar[5]arene based supramolecular prodrug micelles with pH induced aggregate behavior for intracellular drug delivery. Chemical Communications, 2015, 51, 2999-3002.	2.2	43

#	Article	IF	CITATIONS
127	Recyclable Colorimetric Detection of Trivalent Cations in Aqueous Media Using Zwitterionic Gold Nanoparticles. Analytical Chemistry, 2016, 88, 4140-4146.	3.2	43
128	Gas Therapy: An Emerging "Green―Strategy for Anticancer Therapeutics. Advanced Therapeutics, 2018, 1, 1800084.	1.6	43
129	Construction of multilayer coating onto poly-(dl-lactide) to promote cytocompatibility. Biomaterials, 2004, 25, 109-117.	5.7	42
130	A radiomics model for determining the invasiveness of solitary pulmonary nodules that manifest as part-solid nodules. Clinical Radiology, 2019, 74, 933-943.	0.5	42
131	Functionalized biomaterials to combat biofilms. Biomaterials Science, 2020, 8, 4052-4066.	2.6	42
132	A cascade enzymatic reaction activatable gemcitabine prodrug with an AIE-based intracellular light-up apoptotic probe for in situ self-therapeutic monitoring. Chemical Communications, 2017, 53, 9214-9217.	2.2	41
133	Hemoglobin as a Smart pH-Sensitive Nanocarrier To Achieve Aggregation Enhanced Tumor Retention. Biomacromolecules, 2018, 19, 2007-2013.	2.6	41
134	Self-assembled chitosan/heparin multilayer film as a novel template for in situ synthesis of silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2010, 76, 549-555.	2.5	40
135	Construction of photo-responsive micelles from azobenzene-modified hyperbranched polyphosphates and study of their reversible self-assembly and disassembly behaviours. New Journal of Chemistry, 2012, 36, 694-701.	1.4	40
136	Design and fabrication of functional polycaprolactone. E-Polymers, 2015, 15, 3-13.	1.3	40
137	Surface-mediated transfection of a pDNA vector encoding short hairpin RNA to downregulate TGF- \hat{l}^21 expression for the prevention of in-stent restenosis. Biomaterials, 2017, 116, 95-105.	5.7	40
138	Zwitterionic stealth peptide-capped 5-aminolevulinic acid prodrug nanoparticles for targeted photodynamic therapy. Journal of Colloid and Interface Science, 2017, 485, 251-259.	5.0	40
139	Antiâ€Oxidative and Antiâ€Inflammatory Micelles: Break the Dry Eye Vicious Cycle. Advanced Science, 2022, 9, e2200435.	5.6	40
140	Probiotic Bacillus amyloliquefaciens mediate M1 macrophage polarization in mouse bone marrow-derived macrophages. Archives of Microbiology, 2013, 195, 349-356.	1.0	39
141	Self-Healing Spongy Coating for Drug "Cocktail―Delivery. ACS Applied Materials & amp; Interfaces, 2016, 8, 4309-4313.	4.0	39
142	Codeposition of Levodopa and Polyethyleneimine: Reaction Mechanism and Coating Construction. ACS Applied Materials & Description (2018) and Polyethyleneimine: Reaction Mechanism and Coating Construction. ACS Applied Materials & Description (2018) and Polyethyleneimine: Reaction Mechanism and Coating Construction. ACS Applied Materials & Description (2018) and Polyethyleneimine: Reaction Mechanism and Coating Construction. ACS Applied Materials & Description (2018) and Polyethyleneimine: Reaction Mechanism and Coating Construction. ACS Applied Materials & Description (2018) and Polyethyleneimine: Reaction Mechanism and Coating Construction. ACS Applied Materials & Description (2018) and Polyethyleneimine: Reaction Mechanism and Coating Construction.	4.0	39
143	Humidity Responsive Asymmetric Free-Standing Multilayered Film. Langmuir, 2010, 26, 16634-16637.	1.6	38
144	Improved Endothelial Function of Endothelial Cell Monolayer on the Soft Polyelectrolyte Multilayer Film with Matrix-Bound Vascular Endothelial Growth Factor. ACS Applied Materials & Endothelial Growth Factor. A	4.0	38

#	Article	IF	CITATIONS
145	Dual pH-responsive 5-aminolevulinic acid pseudopolyrotaxane prodrug micelles for enhanced photodynamic therapy. Chemical Communications, 2016, 52, 3966-3969.	2.2	38
146	Design and proof of reversible micelleâ€toâ€vesicle multistimuliâ€responsive morphological regulations. Journal of Polymer Science Part A, 2012, 50, 451-457.	2.5	37
147	Light-Responsive Polyion Complex Micelles with Switchable Surface Charge for Efficient Protein Delivery. ACS Macro Letters, 2014, 3, 679-683.	2.3	37
148	Emerging nanobiomaterials against bacterial infections in postantibiotic era. View, 2020, 1, 20200014.	2.7	37
149	Substrate Stiffness Combined with Hepatocyte Growth Factor Modulates Endothelial Cell Behavior. Biomacromolecules, 2016, 17, 2767-2776.	2.6	36
150	Polyamino acid-based gemcitabine nanocarriers for targeted intracellular drug delivery. Polymer Chemistry, 2017, 8, 2490-2498.	1.9	36
151	Covalent Layer-by-Layer Assembly of Hyperbranched Polyether and Polyethyleneimine: Multilayer Films Providing Possibilities for Surface Functionalization and Local Drug Delivery. Biomacromolecules, 2011, 12, 4264-4271.	2.6	35
152	Construction of Redox-Active Multilayer Film for Electrochemically Controlled Release. Langmuir, 2013, 29, 11163-11168.	1.6	35
153	Electrochemically Controlled Stiffness of Multilayers for Manipulation of Cell Adhesion. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4597-4602.	4.0	35
154	Theranostic hyaluronic acid prodrug micelles with aggregation-induced emission characteristics for targeted drug delivery. Science China Chemistry, 2016, 59, 1609-1615.	4.2	35
155	Surface tailoring of poly(dl-lactic acid) by ligand-tethered amphiphilic polymer for promoting chondrocyte attachment and growth. Biomaterials, 2004, 25, 1859-1867.	5.7	34
156	Light-regulated host–guest interaction as a new strategy for intracellular PEG-detachable polyplexes to facilitate nuclear entry. Chemical Communications, 2012, 48, 10126.	2.2	34
157	pH and hydrogen peroxide dual responsive supramolecular prodrug system for controlled release of bioactive molecules. Colloids and Surfaces B: Biointerfaces, 2014, 121, 189-195.	2.5	34
158	Surface modulation of complex stiffness via layer-by-layer assembly as a facile strategy for selective cell adhesion. Biomaterials Science, 2015, 3, 352-360.	2.6	34
159	Chlorin e6 (Ce6)-loaded supramolecular polypeptide micelles with enhanced photodynamic therapy effect against Pseudomonas aeruginosa. Chemical Engineering Journal, 2021, 417, 129334.	6.6	34
160	Fabrication of alternating polycation and albumin multilayer coating onto stainless steel by electrostatic layer-by-layer adsorption. Colloids and Surfaces B: Biointerfaces, 2004, 34, 185-190.	2.5	33
161	The effect of ligand composition on the inÂvivo fate of multidentate poly(ethylene glycol) modified gold nanoparticles. Biomaterials, 2013, 34, 8370-8381.	5.7	33
162	Self-Healing Label Materials Based on Photo-Cross-Linkable Polymeric Films with Dynamic Surface Structures. ACS Nano, 2018, 12, 8686-8696.	7.3	33

#	Article	IF	Citations
163	A photodynamic antibacterial spray-coating based on the host–guest immobilization of the photosensitizer methylene blue. Journal of Materials Chemistry B, 2019, 7, 5089-5095.	2.9	33
164	Patterned Slippery Surface through Dynamically Controlling Surface Structures for Droplet Microarray. Chemistry of Materials, 2019, 31, 834-841.	3.2	33
165	Bacterial infection microenvironment sensitive prodrug micelles with enhanced photodynamic activities for infection control. Colloids and Interface Science Communications, 2021, 40, 100354.	2.0	33
166	Postdiffusion of Oligo-Peptide within Exponential Growth Multilayer Films for Localized Peptide Delivery. Langmuir, 2009, 25, 11664-11671.	1.6	32
167	Charge-Conversional and pH-Sensitive PEGylated Polymeric Micelles as Efficient Nanocarriers for Drug Delivery. Macromolecular Bioscience, 2014, 14, 1280-1290.	2.1	32
168	Stearyl poly(ethylene oxide) grafted surfaces for preferential adsorption of albumin. Biomaterials, 2001, 22, 3015-3023.	5.7	31
169	Norvancomycin-capped silver nanoparticles: Synthesis and antibacterial activities against E. coli. Science in China Series B: Chemistry, 2007, 50, 418-424.	0.8	31
170	Poland's syndrome complicated with breast cancer: mammographic, ultrasonographic, and computed tomographic findings. Acta Radiologica, 2008, 49, 387-390.	0.5	31
171	Biocompatible Poly(<scp>D</scp> , <scp>L</scp> â€lactide) <i>à€blockâ€</i> Poly(2â€methacryloyloxyethylphosphorylcholine) Micelles for Drug Delivery. Macromolecular Chemistry and Physics, 2011, 212, 643-651.	1.1	31
172	Dynamic stiffness of polyelectrolyte multilayer films based on disulfide bonds for in situ control of cell adhesion. Journal of Materials Chemistry B, 2015, 3, 7546-7553.	2.9	31
173	pH-sensitive controlled release of doxorubicin from polyelectrolyte multilayers. Colloids and Surfaces B: Biointerfaces, 2015, 125, 127-133.	2.5	31
174	Intracellular Dual Fluorescent Lightup Bioprobes for Image-Guided Photodynamic Cancer Therapy. Small, 2016, 12, 3870-3878.	5.2	31
175	Intracellular host–guest assembly of gold nanoparticles triggered by glutathione. Chemical Communications, 2016, 52, 582-585.	2.2	31
176	Substrate stiffness differentially impacts autophagy of endothelial cells and smooth muscle cells. Bioactive Materials, 2021, 6, 1413-1422.	8.6	30
177	Stimuliâ€responsive nanoplatforms for antibacterial applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1775.	3.3	30
178	Labelâ€free Fluorescent Sensor for Probing Heparinâ€Protein Interaction Based on Supramolecular Assemblies. Chinese Journal of Chemistry, 2014, 32, 85-90.	2.6	29
179	Programmed photosensitizer conjugated supramolecular nanocarriers with dual targeting ability for enhanced photodynamic therapy. Chemical Communications, 2016, 52, 11935-11938.	2.2	29
180	Mechanical Adaptability of the MMPâ€Responsive Film Improves the Functionality of Endothelial Cell Monolayer. Advanced Healthcare Materials, 2017, 6, 1601410.	3.9	29

#	Article	IF	CITATIONS
181	Drug-eluting intraocular lens with sustained bromfenac release for conquering posterior capsular opacification. Bioactive Materials, 2022, 9, 343-357.	8.6	29
182	A "writing―strategy for shape transition with infinitely adjustable shaping sequences and in situ tunable 3D structures. Materials Horizons, 2016, 3, 581-587.	6.4	28
183	A novel biliary stent coated with silver nanoparticles prolongs the unobstructed period and survival via anti-bacterial activity. Scientific Reports, 2016, 6, 21714.	1.6	28
184	Development of mucoadhesive cationic polypeptide micelles for sustained cabozantinib release and inhibition of corneal neovascularization. Journal of Materials Chemistry B, 2020, 8, 5143-5154.	2.9	28
185	Construction of Multifunctional Coatings via Layer-by-Layer Assembly of Sulfonated Hyperbranched Polyether and Chitosan. Langmuir, 2010, 26, 2624-2629.	1.6	27
186	Rheological properties of redox-responsive, associative ferrocene-modified branched poly(ethylene) Tj ETQq0 0 C) rgBT /Ov	erlock 10 Tf 5
187	Fabrication of dual-responsive micelles based on the supramolecular interaction of cucurbit[8]uril. Polymer Chemistry, 2013, 4, 242-245.	1.9	27
188	Functional 2-methylene-1,3-dioxepane terpolymer: a versatile platform to construct biodegradable polymeric prodrugs for intracellular drug delivery. Polymer Chemistry, 2014, 5, 4061-4068.	1.9	27
189	Biodegradable phosphorylcholine copolymer for cardiovascular stent coating. Journal of Materials Chemistry B, 2020, 8, 5361-5368.	2.9	27
190	Stearyl poly(ethylene oxide) grafted surfaces for preferential adsorption of albumin Part 2. The effect of molecular mobility on protein adsorption. Polymer, 2000, 41, 3713-3718.	1.8	26
191	Protein electrostatic self-assembly on poly(DL-lactide) scaffold to promote osteoblast growth. Journal of Biomedical Materials Research Part B, 2004, 71B, 159-165.	3.0	26
192	Bioinspired phosphorylcholine-modified polyplexes as an effective strategy for selective uptake and transfection of cancer cells. Colloids and Surfaces B: Biointerfaces, 2013, 111, 297-305.	2.5	26
193	Stiffness of polyelectrolyte multilayer film influences endothelial function of endothelial cell monolayer. Colloids and Surfaces B: Biointerfaces, 2017, 149, 379-387.	2.5	26
194	Antimicrobial nanomedicine for ocular bacterial and fungal infection. Drug Delivery and Translational Research, 2021, 11, 1352-1375.	3.0	26
195	A NIR-II emissive polymer AIEgen for imaging-guided photothermal elimination of bacterial infection. Biomaterials, 2022, 286, 121579.	5.7	26
196	Construction of Polycation-Based Non-Viral DNA Nanoparticles and Polyanion Multilayers via Layer-by-Layer Self-Assembly. Macromolecular Rapid Communications, 2005, 26, 1633-1638.	2.0	25
197	Fabrication of thromboresistant multilayer thin film on plasma treated poly (vinyl chloride) surface. Journal of Materials Science: Materials in Medicine, 2005, 16, 687-692.	1.7	25
198	Poly(D,L-lactic acid)-block-(ligand-tethered poly(ethylene glycol)) copolymers as surface additives for promoting chondrocyte attachment and growth. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 76B, 64-75.	1.6	25

#	Article	IF	Citations
199	Disulfideâ€Crosslinked Biomimetic Micelles: Formation, Thiol Reactivity and Cytotoxicity Behavior. Macromolecular Chemistry and Physics, 2010, 211, 2292-2300.	1.1	25
200	Small and Stable Phosphorylcholine Zwitterionic Quantum Dots for Weak Nonspecific Phagocytosis and Effective Tat Peptide Functionalization. Advanced Healthcare Materials, 2013, 2, 352-360.	3.9	25
201	Effects of quaternization on the morphological stability and antibacterial activity of electrospun poly(DMAEMA-co-AMA) nanofibers. Colloids and Surfaces B: Biointerfaces, 2015, 133, 148-155.	2.5	25
202	Infusing Lubricant onto Erasable Microstructured Surfaces toward Guided Sliding of Liquid Droplets. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1959-1967.	4.0	25
203	Mixed-Charged Zwitterionic Polymeric Micelles for Tumor Acidic Environment Responsive Intracellular Drug Delivery. Langmuir, 2019, 35, 1242-1248.	1.6	25
204	Aggregationâ€Induced Emissionâ€Based Platforms for the Treatment of Bacteria, Fungi, and Viruses. Advanced Healthcare Materials, 2021, 10, e2100736.	3.9	25
205	Polydopamine nanoparticles with different sizes for NIR-promoted gene delivery and synergistic photothermal therapy. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112125.	2.5	25
206	Phospholipid based polymer as drug release coating for cardiovascular device. European Polymer Journal, 2004, 40, 291-298.	2.6	24
207	Construction of phospholipid anti-biofouling multilayer on biomedical PET surfaces. Applied Surface Science, 2008, 255, 538-540.	3.1	24
208	Light cross-linkable and pH de-cross-linkable drug nanocarriers for intracellular drug delivery. Polymer Chemistry, 2015, 6, 2069-2075.	1.9	24
209	Dynamic spongy films to immobilize hydrophobic antimicrobial peptides for self-healing bactericidal coating. Journal of Materials Chemistry B, 2016, 4, 6358-6365.	2.9	24
210	Self-wrinkling polyelectrolyte multilayers: construction, smoothing and the underlying mechanism. Physical Chemistry Chemical Physics, 2016, 18, 31168-31174.	1.3	24
211	Biomimetic drug nanocarriers prepared by miniemulsion polymerization for near-infrared imaging and photothermal therapy. Polymer, 2016, 82, 255-261.	1.8	24
212	Blends of stearyl poly(ethylene oxide) coupling-polymer in chitosan as coating materials for polyurethane intravascular catheters. Journal of Biomedical Materials Research Part B, 2001, 58, 372-383.	3.0	23
213	Biocompatible and biodegradable supramolecular assemblies formed with cucurbit[8]uril as a smart platform for reduction-triggered release of doxorubicin. Polymer Chemistry, 2014, 5, 1843.	1.9	23
214	The relief of hypoxic microenvironment using an O2 self-sufficient fluorinated nanoplatform for enhanced photodynamic eradication of bacterial biofilms. Nano Research, 2022, 15, 1636-1644.	5.8	23
215	Zwitterionic supramolecular prodrug nanoparticles based on host-guest interactions for intracellular drug delivery. Polymer, 2016, 97, 449-455.	1.8	22
216	Surface Analysis of Poly(ether urethane) Blending Stearyl Poly(ethylene oxide) Coupling Polymer. Macromolecules, 2000, 33, 8472-8478.	2.2	21

#	Article	IF	Citations
217	Albumin and fibrinogen adsorption on Cibacron blue F3G-A immobilised onto PU-PHEMA (polyurethane-poly(hydroxyethylmethacrylate)) surfaces. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 439-455.	1.9	21
218	Synthesis of hydroxyl-capped comb-like poly(ethylene glycol) to develop shell cross-linkable micelles. Polymer, 2006, 47, 1987-1994.	1.8	21
219	Spontaneous Vesicle Formation in Aqueous Solutions of Comb-Like PEG. Macromolecular Rapid Communications, 2006, 27, 214-218.	2.0	21
220	Construct biomimetic giant vesicles via selfâ€assembly of poly(2â€methacryloyloxyethyl) Tj ETQq0 0 0 rgBT /Over Science, 2010, 118, 3197-3202.	lock 10 Tf 1.3	50 627 Td 21
221	Photothermal-assisted surface-mediated gene delivery for enhancing transfection efficiency. Biomaterials Science, 2019, 7, 5177-5186.	2.6	21
222	miR-22 eluting cardiovascular stent based on a self-healable spongy coating inhibits in-stent restenosis. Bioactive Materials, 2021, 6, 4686-4696.	8.6	21
223	Stability and Drug Loading of Spontaneous Vesicles of Comb-Like PEG Derivates. Macromolecular Rapid Communications, 2007, 28, 660-665.	2.0	20
224	Netlike Knitting of Polyelectrolyte Multilayers on Honeycomb-Patterned Substrate. Langmuir, 2010, 26, 14236-14240.	1.6	20
225	Cucurbit[8]uril Supramolecular Assembly for Positively Charged Ultrathin Films as Nanocontainers. Langmuir, 2013, 29, 14101-14107.	1.6	20
226	REDV/Rapamycin-loaded polymer combinations as a coordinated strategy to enhance endothelial cells selectivity for a stent system. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1166-1173.	2.5	20
227	Abrp, a new gene, confers reduced susceptibility to tetracycline, glycylcine, chloramphenicol and fosfomycin classes in Acinetobacter baumannii. European Journal of Clinical Microbiology and Infectious Diseases, 2016, 35, 1371-1375.	1.3	20
228	Thermo-triggered ultrafast self-healing of microporous coating for on-demand encapsulation of biomacromolecules. Biomaterials, 2019, 192, 15-25.	5.7	20
229	Macromolecular Platform with Super-Cation Enhanced Trans-Cornea Infiltration for Noninvasive Nitric Oxide Delivery in Ocular Therapy. ACS Nano, 2020, 14, 16929-16938.	7.3	20
230	Zwitterionic phosphorylcholine-protected water-soluble Ag nanoparticles. Science in China Series B: Chemistry, 2009, 52, 64-68.	0.8	19
231	Multilayers based on cationic nanocomplexes for co-delivery of doxorubicin and DNA. Colloids and Surfaces B: Biointerfaces, 2013, 112, 67-73.	2.5	19
232	Oneâ€Step Preparation of Reductionâ€Responsive Biodegradable Polymers as Efficient Intracellular Drug Delivery Platforms. Macromolecular Chemistry and Physics, 2014, 215, 1848-1854.	1.1	19
233	Understanding the Oxidative Stability of Antifouling Polymer Brushes. Langmuir, 2017, 33, 7298-7304.	1.6	19
234	Structure-Switchable DNA Programmed Disassembly of Nanoparticles for Smart Size Tunability and Cancer-Specific Drug Release. ACS Applied Materials & Samp; Interfaces, 2020, 12, 22560-22571.	4.0	19

#	Article	IF	CITATIONS
235	Hierarchical Capillary Coating to Biofunctionlize Drug-Eluting Stent for Improving Endothelium Regeneration. Research, 2020, 2020, 1458090.	2.8	18
236	Dissolving microneedles with a biphasic release of antibacterial agent and growth factor to promote wound healing. Biomaterials Science, 2022, 10, 2409-2416.	2.6	18
237	Osteoblast growth promotion by protein electrostatic self-assembly on biodegradable poly(lactide). Journal of Biomaterials Science, Polymer Edition, 2005, 16, 761-774.	1.9	17
238	Highly soluble PEGylated pyrene–gold nanoparticles dyads for sensitive turn-on fluorescent detection of biothiols. Analyst, The, 2010, 135, 2323.	1.7	17
239	Fast and selective cancer cell uptake of therapeutic gold nanorods by surface modifications with phosphorylcholine and Tat. Journal of Materials Chemistry, 2012, 22, 13969.	6.7	17
240	mRNA Guided Intracellular Self-Assembly of DNA–Gold Nanoparticle Conjugates as a Precise Trigger to Up-Regulate Cell Apoptosis and Activate Photothermal Therapy. Bioconjugate Chemistry, 2019, 30, 1763-1772.	1.8	17
241	Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy. Asian Journal of Pharmaceutical Sciences, 2022, 17, 35-52.	4.3	17
242	Facile Synthesis of Zn ²⁺ â€Based Hybrid Nanoparticles as a New Paradigm for the Treatment of Internal Bacterial Infections. Advanced Functional Materials, 2022, 32, .	7.8	17
243	Selective Adsorption of Serum Albumin on Biomedical Polyurethanes Modified by a Poly(ethylene) Tj ETQq1 1 0.78 792-803.	34314 rgB 1.8	T /Overlock 16
244	Poly(2â€(methacryloyloxy) ethyl phosphorylcholine)â€functionalized multiâ€walled carbon nanotubes: Preparation, characterization, solubility, and effects on blood coagulation. Journal of Applied Polymer Science, 2009, 113, 351-357.	1.3	16
245	The (PrS/HGFâ€pDNA) multilayer films for geneâ€eluting stent coating: Geneâ€protecting, anticoagulation, antibacterial properties, and ⟨i⟩in vivo⟨/i⟩ antirestenosis evaluation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 430-439.	1.6	16
246	Improved Antithrombotic Function of Oriented Endothelial Cell Monolayer on Microgrooves. ACS Biomaterials Science and Engineering, 2018, 4, 1976-1985.	2.6	16
247	One-step preparation of reduction-responsive cross-linked gemcitabine prodrug micelles for intracellular drug delivery. Colloids and Surfaces B: Biointerfaces, 2019, 181, 94-101.	2.5	16
248	Humidity‶riggered Relaxation of Polyelectrolyte Complexes as a Robust Approach to Generate Extracellular Matrix Biomimetic Films. Advanced Healthcare Materials, 2020, 9, e2000381.	3.9	16
249	A Bioinspired Hydrogel-Elastomer Hybrid Surface for Enhanced Mechanical Properties and Lubrication. ACS Applied Materials & Samp; Interfaces, 2021, 13, 50461-50469.	4.0	16
250	Ferrocenyl branched poly (ethylene imine) micelles as reductive templates for the preparation of silver nanoparticles. Journal of Nanoparticle Research, 2010, 12, 2179-2187.	0.8	15
251	Substrate-mediated delivery of gene complex nanoparticles via polydopamine coating for enhancing competitiveness of endothelial cells. Colloids and Surfaces B: Biointerfaces, 2016, 147, 172-179.	2.5	15
252	Photothermal Spongy Film for Enhanced Surface-Mediated Transfection to Primary Cells. ACS Applied Bio Materials, 2019, 2, 2676-2684.	2.3	15

#	Article	IF	CITATIONS
253	A gene-coated microneedle patch based on industrialized ultrasonic spraying technology with a polycation vector to improve antitumor efficacy. Journal of Materials Chemistry B, 2021, 9, 5528-5536.	2.9	15
254	Controlling Structural Transformation of Polyelectrolyte Films for Spatially Encapsulating Functional Species. Small, 2019, 15, e1804867.	5.2	14
255	Versatile and Functional Surface Patterning of in Situ Breath Figure Pore Formation via Solvent Treatment. ACS Applied Materials & Solvent 12, 47048-47058.	4.0	14
256	A Tough, Slippery, and Anticoagulant Double-Network Hydrogel Coating. ACS Applied Polymer Materials, 2022, 4, 5941-5951.	2.0	14
257	Self-Assembly and Surface Structure of an Amphiphilic Graft Copolymer, Polystyrene-graft-ï‰-Stearyl–Poly(ethylene oxide). Journal of Colloid and Interface Science, 2000, 224, 255-260.	5.0	13
258	Bowl- and porous sphere-shaped supramolecular assemblies and their application as templates for confined assembly of gold nanoparticles. Soft Matter, 2011, 7, 1114-1120.	1.2	13
259	More efficient NIR photothermal therapeutic effect from intracellular heating modality than extracellular heating modality: an in vitro study. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	13
260	Anti-CD34 Antibody Functionalized Swollen Polymeric Coating for Endothelial Cell Rapid Selectively Capture. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 99-103.	1.8	13
261	Various-sized stearyl poly(ethylene oxide) coupling-polymer blending poly(ether urethane) material for surface study and biomedical applications. Macromolecular Chemistry and Physics, 2000, 201, 1574-1584.	1.1	12
262	Construction of albumin multilayer coating onto plasma treated poly(vinyl chloride) via electrostatic self-assembly. Polymers for Advanced Technologies, 2004, 15, 490-494.	1.6	12
263	Selfâ€assembly and degradation of poly[(2â€methacryloyloxyethyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 large compound micelles to vesicles. Polymer International, 2011, 60, 578-583.	347 Td (p	hosphory 12
264	pH modulated layer-by-layer assembly as a new approach to tunable formulating of DNA within multilayer coating. Reactive and Functional Polymers, 2011, 71, 254-260.	2.0	12
265	Glutathione Responsive \hat{l}^2 -Cyclodextrin Conjugated S-Nitrothiols as a Carrier for Intracellular Delivery of Nitric Oxide. Bioconjugate Chemistry, 2019, 30, 583-591.	1.8	12
266	Zwitterionic Reduction-Activated Supramolecular Prodrug Nanocarriers for Photodynamic Ablation of Cancer Cells. Langmuir, 2019, 35, 1919-1926.	1.6	12
267	Antimicrobial Peptide-Tether Dressing Able to Enhance Wound Healing by Tissue Contact. ACS Applied Materials & Samp; Interfaces, 2022, 14, 24213-24228.	4.0	12
268	Thin electroconductive hydrogel films by in situ electropolymerization of pyrrole within polyelectrolyte multilayers. RSC Advances, 2014, 4, 24511.	1.7	11
269	Cucurbit[8]uril-based stimuli-responsive films as a sacrificial layer for preparation of free-standing thin films. Chemical Communications, 2015, 51, 1576-1578.	2.2	11
270	The renaissance of nitric oxide: from improvement of stability to enhancement of endocytosis. Materials Chemistry Frontiers, 2018, 2, 830-834.	3.2	11

#	Article	IF	Citations
271	Rapid Buildup Arrays with Orthogonal Biochemistry Gradients via Light-Induced Thiol–Ene "Click― Chemistry for High-Throughput Screening of Peptide Combinations. ACS Applied Materials & Interfaces, 2020, 12, 20243-20252.	4.0	11
272	Periodic Stratified Porous Structures in Dynamic Polyelectrolyte Films Through Standingâ€Wave Optical Crosslinking for Structural Color. Advanced Science, 2021, 8, e2100402.	5.6	11
273	Spraying layer-by-layer assembly film based on the coordination bond of bioinspired polydopamine–FeIII. Thin Solid Films, 2016, 600, 76-82.	0.8	10
274	Surface-Mediated Stimuli-Responsive Gene Delivery Based on Breath Figure Film Combined with Matrix Metalloproteinase-Sensitive Hydrogel. ACS Biomaterials Science and Engineering, 2019, 5, 6610-6616.	2.6	10
275	Polymer coated nanodiamonds as gemcitabine prodrug with enzymatic sensitivity for pancreatic cancer treatment. Progress in Natural Science: Materials International, 2020, 30, 711-717.	1.8	10
276	Synthesis and characterization of cholesterol-poly(ethylene glycol)-poly(D,L-lactic acid) copolymers for promoting osteoblast attachment and proliferation. Journal of Materials Science: Materials in Medicine, 2006, 17, 899-909.	1.7	9
277	Phosphorylcholine functionalized dendrimers for the formation of highly stable and reactive gold nanoparticles and their glucose conjugation for biosensing. Journal of Nanoparticle Research, 2011, 13, 4075-4083.	0.8	9
278	Enhanced electrochemical stimuli multilayers based on a ferrocene-containing polymer. Science Bulletin, 2015, 60, 936-942.	4.3	9
279	Surface Metallization of Porous Polymer Materials for Multifunctional Applications. Langmuir, 2020, 36, 1454-1461.	1.6	9
280	Bioinspired NO release coating enhances endothelial cells and inhibits smooth muscle cells. Journal of Materials Chemistry B, 2022, 10, 2454-2462.	2.9	9
281	Verteporfin-loaded supramolecular micelles for enhanced cisplatin-based chemotherapy <i>via</i> autophagy inhibition. Journal of Materials Chemistry B, 2022, 10, 2670-2679.	2.9	9
282	ESR spectroscopy to determine the molecular mobility of poly(ethylene oxide) grafts in amphiphilic graft copolymers. Macromolecular Rapid Communications, 1998, 19, 473-477.	2.0	8
283	Selective binding of albumin on stearyl poly(ethylene oxide) coupling polymer-modified poly(ether) Tj ETQq $1\ 1\ 0$.784314 rş	gBT /Overlack
284	Enzyme biocatalyst route to superhydrophobic surfaces on microstructured poly(ethylene) Tj ETQq0 0 0 rgBT /O	verlock 10	Tf ₈ 50 222 Td
285	Dynamic Porous Pattern through Controlling Noncovalent Interactions in Polyelectrolyte Film for Sequential and Regional Encapsulation. ACS Applied Materials & Encapsulation.	4.0	8
286	Electrospun fiber membrane with asymmetric NO release for the differential regulation of cell growth. Bio-Design and Manufacturing, 2021, 4, 469-478.	3.9	8
287	Build an implanted "arsenal― detachable microneedles for NIR-triggered cancer photothermo-chemotherapy. Biomaterials Science, 2021, 9, 4737-4745.	2.6	8
288	Fabrication of programmed photosensitizer-conjugated nanoassemblies by dual supramolecular self-assembly for photodynamic therapy of orthotopic hepatoma. Chemical Engineering Journal, 2022, 435, 134930.	6.6	8

#	Article	IF	CITATIONS
289	A novel urethane containing copolymer as a surface modification additive for blood contact materials. Journal of Materials Science: Materials in Medicine, 2002, 13, 677-684.	1.7	7
290	Thermosensitive Nanocables Prepared by Surface-Initiated Atom Transfer Radical Polymerization. Nanoscale Research Letters, 2009, 4, 84-89.	3.1	7
291	pH-Triggered DNA delivery based on multilayer film of DNA polyplexes and charge-reversible poly(ethylenimine). Thin Solid Films, 2012, 520, 5426-5430.	0.8	7
292	The influence of substrate stiffness on osteogenesis of vascular smooth muscle cells. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111388.	2.5	7
293	High-throughput hyaluronic acid hydrogel arrays for cell selective adhesion screening. Journal of Materials Chemistry B, 2021, 9, 4024-4030.	2.9	7
294	Nitric oxide pretreatment enhances ofloxacin susceptibility of biofilm concomitant with exopolysaccharide depletion. Colloids and Interface Science Communications, 2021, 41, 100371.	2.0	7
295	Fabrication of "Spongy Skin―on Diversified Materials Based on Surface Swelling Non-Solvent-Induced Phase Separation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 57000-57008.	4.0	7
296	Mixed-charge modification as a robust method to realize the antiviral ability of gold nanoparticles in a high protein environment. Nanoscale, 2021, 13, 19857-19863.	2.8	7
297	Cancer-Associated Fibroblast-Targeted Delivery of Captopril to Overcome Penetration Obstacles for Enhanced Pancreatic Cancer Therapy. ACS Applied Bio Materials, 2022, 5, 3544-3553.	2.3	7
298	"Loop―or "Tailâ€? Self-Assembly and Surface Architecture of Polystyrene-graft-ï‰-stearyl-poly(ethylene) Tj ₁ ETQq(0 0 g rgBT /Ov
299	Delivery of surface-mediated non-viral gene nanoparticles from ultrathin layer-by-layer multilayers. Science China Chemistry, 2010, 53, 508-513.	4.2	6
300	Layer by layer self-assembly of poly[2-(methacryloyloxy) ethyl phosphorylcholine] multilayer via the ionic complexation with zirconium. Colloids and Surfaces B: Biointerfaces, 2012, 94, 22-26.	2.5	6
301	Supramolecular Micelles and Reverse Micelles Based on Cyclodextrin Polyrotaxanes. Chinese Journal of Chemistry, 2014, 32, 73-77.	2.6	6
302	An ROS-Responsive Antioxidative Macromolecular Prodrug of Caffeate for Uveitis Treatment. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1101-1109.	2.0	6
303	The effect of formation of the liquid crystalline phase on the blood compatibility of a cholesterol modified silicone. Journal of Materials Science: Materials in Medicine, 2005, 16, 277-282.	1.7	5
304	On-Demand Shape Recovery Kinetics Modulation with a Wide Regulation Range and Spatially Heterogeneous Shape Recovery Rate. Journal of Physical Chemistry C, 2017, 121, 11144-11150.	1.5	5
305	Spatially Confining Surface Roughness on Exponentially Growing Polyelectrolyte Multilayer Films. Advanced Materials Interfaces, 2019, 6, 1900702.	1.9	5
306	Mixedâ€charge bionanointerfaces: Opposite charges work in harmony to meet the challenges in biomedical applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1600.	3.3	5

#	Article	IF	CITATIONS
307	Deep Mining of Subtle Differences in Cell Morphology via Deep Learning. Advanced Theory and Simulations, 2021, 4, 2000172.	1.3	5
308	Intraocular Lens with Mussel-Inspired Coating for Preventing Posterior Capsule Opacification via Photothermal Effect. ACS Applied Bio Materials, 2021, 4, 3579-3586.	2.3	5
309	Mir-22-incorporated polyelectrolyte coating prevents intima hyperplasia after balloon-induced vascular injury. Biomaterials Science, 2022, 10, 3612-3623.	2.6	5
310	Surface tailoring of poly(ethylene terephthalate) via ligand-tethered comb-like PEG to enhance endothelialization. Journal of Materials Science: Materials in Medicine, 2008, 19, 291-299.	1.7	4
311	Photodynamic Theranostics: Glutathione Activatable Photosensitizerâ€Conjugated Pseudopolyrotaxane Nanocarriers for Photodynamic Theranostics (Small 45/2016). Small, 2016, 12, 6178-6178.	5.2	4
312	Nanostructured Multilayer Films Assembled from Poly(dopamine)â€Coated Carbon Nanotubes for Controlling Cell Behavior. ChemNanoMat, 2017, 3, 319-327.	1.5	4
313	Methemoglobin as a redox-responsive nanocarrier to trigger the in situ anticancer ability of artemisinin. NPG Asia Materials, 2017, 9, e423-e423.	3.8	4
314	Gradient Porous Structure Templated by Breath Figure Method. Langmuir, 2021, 37, 6016-6021.	1.6	4
315	Janus membranes with asymmetric cellular adhesion behaviors for regenerating eardrum perforation. Journal of Materials Chemistry B, 2022, 10, 2719-2727.	2.9	4
316	The substrate stiffness at physiological range significantly modulates vascular cell behavior. Colloids and Surfaces B: Biointerfaces, 2022, 214, 112483.	2.5	4
317	Microneedles loaded with glutathioneâ€scavenging composites for nitric oxide enhanced photodynamic therapy of melanoma. Bioengineering and Translational Medicine, 2023, 8, .	3.9	4
318	A novel crosslinkable polymer as drug-loaded coating for biomedical device. Journal of Materials Science: Materials in Medicine, 2004, 15, 137-143.	1.7	3
319	A QCM Biosensor Based on Gold Nanoparticles Amplification for Real-time Bacteria DNA Detection. , 2007, , .		3
320	Therapy effects of gold nanorods on the CNE-1 nasopharyngeal carcinoma cell line. Drug Design, Development and Therapy, 2012, 6, 297.	2.0	3
321	Precise 2Dâ€Patterned Incompatible Catalysts for Reactions in Oneâ€Pot. Chemistry - A European Journal, 2019, 25, 13640-13646.	1.7	3
322	Introduction of lactobionic acid ligand into mixed-charge nanoparticles to realize in situ triggered active targeting to hepatoma cells. Materials Today Bio, 2019, 4, 100034.	2.6	3
323	A facile method for high-throughput screening of drug-eluting coatings in droplet microarrays based on ultrasonic spray deposition. Biomaterials Science, 2021, 9, 6787-6794.	2.6	3
324	A deep-learning-based workflow to deal with the defocusing problem in high-throughput experiments. Bioactive Materials, 2022, 11, 218-229.	8.6	3

#	Article	IF	CITATIONS
325	<scp>pH</scp> â€sensitive polyion nanocomplexes for antimicrobial peptide delivery. Journal of Polymer Science, 2022, 60, 2289-2297.	2.0	3
326	Fabrication of alternating polycation and albumin mutilayer coating by electrostatic layer-by-layer adsorption. Journal of Materials Science, 2004, 39, 349-351.	1.7	2
327	Modulation of cell behaviors by electrochemically active polyelectrolyte multilayers. E-Polymers, 2014, 14, 297-304.	1.3	2
328	Actuators: Combining 3D Printing with Electrospinning for Rapid Response and Enhanced Designability of Hydrogel Actuators (Adv. Funct. Mater. 19/2018). Advanced Functional Materials, 2018, 28, 1870124.	7.8	2
329	New Morphogenetic Strategy Inspired by the Viscoelasticity of Polymers. ACS Applied Materials & Interfaces, 2020, 12, 36620-36627.	4.0	2
330	Rapid build-up of high-throughput screening microarrays with biochemistry gradients <i>via</i> light-induced thiol–ene "click―chemistry. Journal of Materials Chemistry B, 2021, 9, 3032-3037.	2.9	2
331	Dynamically softened substrate regulates malignancy of breast tumor cells. Science China Materials, 2021, 64, 2580-2592.	3.5	2
332	Labelâ€Free and In Situ Identification of Cells via Combinational Machine Learning Models. Small Methods, 2022, 6, e2101405.	4.6	2
333	Dynamic structural controlment for the functionalization of polyelectrolyte multilayer films., 2022, 1, 100016.		2
334	Cholesterol Tethered Poly(DL-Lactic Acid) for Promoting Osteoblast Attachment and Growth. Journal of Bioactive and Compatible Polymers, 2005, 20, 527-540.	0.8	1
335	The effect of a cholesterol liquid crystalline structure on osteoblast cell behavior. Biomedical Materials (Bristol), 2009, 4, 025010.	1.7	1
336	pH-Responsive supramolecular prodrug micelles based on cucurbit[8]uril for intracellular drug delivery. Journal of Controlled Release, 2015, 213, e134-e135.	4.8	1
337	Rapid and In Situ Synthesis of Gold Nanoparticles in Redox Multilayer Film for Biosensor Applications. ChemNanoMat, 2019, 5, 1515-1520.	1.5	1
338	Bioinspired Phosphorylcholine Motivation for Biocompatible Monolayer Protected Carbon Nanotubes (CNTs) in Nanomedicine. Journal of Bionanoscience, 2008, 2, 49-53.	0.4	1
339	Detection of E. coli O157:H7 DNA by a novel QCM biosensor coupled with gold nanoparticles amplification., 2007,,.		0
340	Camptothecin-conjugated biodegradable prodrug micelles for theranostic near-infrared fluorescent imaging and intracellular drug release. Journal of Controlled Release, 2015, 213, e37.	4.8	0
341	Light and pH dual responsive polyion complex micelles for efficient protein delivery. Journal of Controlled Release, 2015, 213, e90-e91.	4.8	0
342	Zwitterionic pendant polymer and doxorubicin decorated β-cyclodextrin guest–host micelles for efficient drug delivery. Journal of Controlled Release, 2015, 213, e129-e130.	4.8	0

#	Article	IF	CITATIONS
343	Endothelial Cells: Mechanical Adaptability of the MMPâ€Responsive Film Improves the Functionality of Endothelial Cell Monolayer (Adv. Healthcare Mater. 14/2017). Advanced Healthcare Materials, 2017, 6, .	3.9	0
344	Ratiometrically Designed Nanocarrier to Impact Major Cancer Pathways for Effective Pancreatic Cancer Treatment. Chemical Research in Chinese Universities, 2020, 36, 1143-1144.	1.3	0
345	FABRICATING OF DOUBLE NETWORK ENHANCED FREE-STANDING MULTILAYER FILM. Acta Polymerica Sinica, 2011, 011, 908-912.	0.0	O
346	Laserâ€ŧriggered Interfacial Generation of ROS Promotes a Rapid Fabrication of Polydopamine Coating. Macromolecular Materials and Engineering, 0, , 2100987.	1.7	0
347	Introduction to bioinspired surfaces engineering for biomaterials. Journal of Materials Chemistry B, 2022, 10, 2277-2279.	2.9	O
348	<scp>pH</scp> responsive, reversible photoâ€crosslinkable micelle in layerâ€byâ€layer assemblyâ€"Study on film growth and drug delivery behavior. Journal of Polymer Science, 0, , .	2.0	0