Yangyang Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2331905/publications.pdf

Version: 2024-02-01

11	840 citations	933447 10 h-index	1372567 10 g-index
papers	Citations	II-IIIQEX	g-muex
11 all docs	11 docs citations	11 times ranked	1451 citing authors

#	Article	IF	CITATIONS
1	Amyloid Fibrilâ€Templated Highâ€Performance Conductive Aerogels with Sensing Properties. Small, 2020, 16, e2004932.	10.0	19
2	Conductive Aerogels: Amyloid Fibrilâ€Templated Highâ€Performance Conductive Aerogels with Sensing Properties (Small 45/2020). Small, 2020, 16, 2070246.	10.0	O
3	Archimedean Spiral Inspired Conductive Supramolecular Elastomer with Rapid Electrical and Mechanical Selfâ€Healing Capability for Sensor Application. Advanced Materials Technologies, 2019, 4, 1800424.	5.8	12
4	Biological phytic acid as a multifunctional curing agent for elastomers: towards skin-touchable and flame retardant electronic sensors. Green Chemistry, 2017, 19, 3418-3427.	9.0	41
5	Self-Healing, Highly Sensitive Electronic Sensors Enabled by Metal–Ligand Coordination and Hierarchical Structure Design. ACS Applied Materials & 2017, 9, 20106-20114.	8.0	115
6	In situ doping enables the multifunctionalization of templately synthesized polyaniline@cellulose nanocomposites. Carbohydrate Polymers, 2017, 177, 241-248.	10.2	26
7	Spirally Structured Conductive Composites for Highly Stretchable, Robust Conductors and Sensors. ACS Applied Materials & Distriction (2017), 9, 23007-23016.	8.0	55
8	Highly Sensitive, Stretchable, and Wash-Durable Strain Sensor Based on Ultrathin Conductive Layer@Polyurethane Yarn for Tiny Motion Monitoring. ACS Applied Materials & Layer@Polyurethane Yarn for Tiny Motion Monitoring. ACS Applied Materials & Layer@Polyurethane Yarn for Tiny Motion Monitoring. ACS Applied Materials & Layer Polyurethane Yarn for Tiny Motion Monitoring. ACS Applied Materials & Layer Polyurethane Yarn for Tiny Motion Monitoring. ACS Applied Materials & Layer Polyurethane Yarn for Tiny Motion Monitoring. ACS Applied Materials & Layer Polyurethane Yarn for Tiny Motion Monitoring. ACS Applied Materials & Layer Polyurethane Yarn for Tiny Motion Monitoring. ACS Applied Materials & Layer Polyurethane Yarn for Tiny Motion Monitoring. ACS Applied Materials & Layer Polyurethane Yarn for Tiny Motion Monitoring. ACS Applied Materials & Layer Polyurethane Yarn for Tiny Motion Monitoring. ACS Applied Materials & Layer Polyurethane Yarn for Tiny Motion Monitoring. ACS Applied Materials & Layer Polyurethane Yarn for Tiny Motion Monitoring. ACS Applied Materials & Layer Polyurethane Yarn for Tiny Motion Monitoring. ACS Applied Materials & Layer Polyurethane Yarn for Tiny Motion Monitoring. ACS Applied Materials & Layer Polyurethane Yarn for Tiny Motion Monitoring Yarn for Tiny Motion Monito	8.0	241
9	Dual Functional Biocomposites Based on Polydopamine Modified Cellulose Nanocrystal for Fe ³⁺ -Pollutant Detecting and Autoblocking. ACS Sustainable Chemistry and Engineering, 2016, 4, 5667-5673.	6.7	66
10	Reductant-Free Synthesis of Silver Nanoparticles-Doped Cellulose Microgels for Catalyzing and Product Separation. ACS Sustainable Chemistry and Engineering, 2016, 4, 6322-6331.	6.7	82
11	Flame Retardant, Heat Insulating Cellulose Aerogels from Waste Cotton Fabrics by in Situ Formation of Magnesium Hydroxide Nanoparticles in Cellulose Gel Nanostructures. ACS Sustainable Chemistry and Engineering, 2015, 3, 1853-1859.	6.7	183