Patrick G Hogan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2331711/publications.pdf Version: 2024-02-01

PATRICK C. HOCAN

#	Article	IF	CITATIONS
1	Calcineurin: A star is reborn. Cell Calcium, 2021, 94, 102324.	2.4	2
2	Calcium signals regulate the functional differentiation of thymic iNKT cells. EMBO Journal, 2021, 40, e107901.	7.8	3
3	BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nature Immunology, 2021, 22, 983-995.	14.5	147
4	STIM calcium sensing and conformational change. Journal of Physiology, 2020, 598, 1695-1705.	2.9	21
5	L-type Ca ²⁺ channel blockers promote vascular remodeling through activation of STIM proteins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17369-17380.	7.1	37
6	Septins organize endoplasmic reticulum-plasma membrane junctions for STIM1-ORAI1 calcium signalling. Scientific Reports, 2019, 9, 10839.	3.3	29
7	Defining â€~T cell exhaustion'. Nature Reviews Immunology, 2019, 19, 665-674.	22.7	879
8	TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8 ⁺ T cell exhaustion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12410-12415.	7.1	481
9	Targeting the NFAT:AP-1 transcriptional complex on DNA with a small-molecule inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9959-9968.	7.1	36
10	Subcellular Localization and Activity of the Mitogen-Activated Protein Kinase Kinase 7 (MKK7) <i>γ</i> Isoform are Regulated through Binding to the Phosphatase Calcineurin. Molecular Pharmacology, 2019, 95, 20-32.	2.3	6
11	Coiled-Coil Formation Conveys a STIM1 Signal from ER Lumen to Cytoplasm. Cell Reports, 2018, 22, 72-83.	6.4	64
12	Calcium sensing by the STIM1 ER-luminal domain. Nature Communications, 2018, 9, 4536.	12.8	51
13	A secretory pathway kinase regulates sarcoplasmic reticulum Ca2+ homeostasis and protects against heart failure. ELife, 2018, 7, .	6.0	22
14	Exhaustion-associated regulatory regions in CD8 ⁺ tumor-infiltrating T cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2776-E2785.	7.1	242
15	Calcium–NFAT transcriptional signalling in T cell activation and T cell exhaustion. Cell Calcium, 2017, 63, 66-69.	2.4	119
16	Transcriptional and epigenetic regulation of T cell hyporesponsiveness. Journal of Leukocyte Biology, 2017, 102, 601-615.	3.3	39
17	The STIM-Orai Pathway: Orai, the Pore-Forming Subunit of the CRAC Channel. Advances in Experimental Medicine and Biology, 2017, 993, 39-57.	1.6	19
10	Simpling ED Store Depletion to Discore Marshame Out: Channels 2017 51.72		_

18 Signaling ER Store Depletion to Plasma Membrane Orai Channels. , 2017, , 51-72.

1

PATRICK G HOGAN

#	Article	IF	CITATIONS
19	Store-operated calcium entry: Mechanisms and modulation. Biochemical and Biophysical Research Communications, 2015, 460, 40-49.	2.1	166
20	TMEM110 regulates the maintenance and remodeling of mammalian ER–plasma membrane junctions competent for STIM–ORAI signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7083-92.	7.1	58
21	The Transcription Factor NFAT Promotes Exhaustion of Activated CD8 + T Cells. Immunity, 2015, 42, 265-278.	14.3	555
22	The STIM1–ORAI1 microdomain. Cell Calcium, 2015, 58, 357-367.	2.4	81
23	Proteomic mapping of ER–PM junctions identifies STIMATE as a regulator of Ca2+ influx. Nature Cell Biology, 2015, 17, 1339-1347.	10.3	179
24	Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation. ELife, 2015, 4, .	6.0	197
25	Structure-Based Optimization of a Peptidyl Inhibitor against Calcineurin-Nuclear Factor of Activated T Cell (NFAT) Interaction. Journal of Medicinal Chemistry, 2014, 57, 7792-7797.	6.4	10
26	STIM1 triggers a gating rearrangement at the extracellular mouth of the ORAI1 channel. Nature Communications, 2014, 5, 5164.	12.8	75
27	An siRNA screen for NFAT activation identifies septins as coordinators of store-operated Ca2+ entry. Nature, 2013, 499, 238-242.	27.8	207
28	Initial activation of STIM1, the regulator of store-operated calcium entry. Nature Structural and Molecular Biology, 2013, 20, 973-981.	8.2	175
29	Insights into CRAC channel gating and ion permeation. Cell Research, 2012, 22, 1105-1107.	12.0	2
30	Interaction of calcineurin with substrates and targeting proteins. Trends in Cell Biology, 2011, 21, 91-103.	7.9	302
31	STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nature Structural and Molecular Biology, 2010, 17, 112-116.	8.2	212
32	Molecular Basis of Calcium Signaling in Lymphocytes: STIM and ORAI. Annual Review of Immunology, 2010, 28, 491-533.	21.8	684
33	Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nature Immunology, 2008, 9, 432-443.	14.5	528
34	Structure of Calcineurin in Complex with PVIVIT Peptide: Portrait of a Low-affinity Signalling Interaction. Journal of Molecular Biology, 2007, 369, 1296-1306.	4.2	122
35	A Conserved Docking Site Modulates Substrate Affinity for Calcineurin, Signaling Output, and In Vivo Function. Molecular Cell, 2007, 25, 889-901.	9.7	93
36	Dissecting ICRAC, a store-operated calcium current. Trends in Biochemical Sciences, 2007, 32, 235-245.	7.5	104

PATRICK G HOGAN

#	Article	IF	CITATIONS
37	A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature, 2006, 441, 179-185.	27.8	2,016
38	Orail is an essential pore subunit of the CRAC channel. Nature, 2006, 443, 230-233.	27.8	1,223
39	Calcineurin. Current Biology, 2005, 15, R442-R443.	3.9	33
40	Selective inhibition of calcineurin-NFAT signaling by blocking protein-protein interaction with small organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7554-7559.	7.1	154
41	Structural Delineation of the Calcineurin–NFAT Interaction and its Parallels to PP1 Targeting Interactions. Journal of Molecular Biology, 2004, 342, 1659-1674.	4.2	77
42	Transcriptional regulation by calcium, calcineurin, and NFAT. Genes and Development, 2003, 17, 2205-2232.	5.9	1,675
43	Concerted Dephosphorylation of the Transcription Factor NFAT1 Induces a Conformational Switch that Regulates Transcriptional Activity. Molecular Cell, 2000, 6, 539-550.	9.7	418
44	Affinity-Driven Peptide Selection of an NFAT Inhibitor More Selective Than Cyclosporin A. Science, 1999, 285, 2129-2133.	12.6	562
45	Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature, 1998, 392, 42-48.	27.8	498
46	Selective Inhibition of NFAT Activation by a Peptide Spanning the Calcineurin Targeting Site of NFAT. Molecular Cell, 1998, 1, 627-637.	9.7	268
47	TRANSCRIPTION FACTORS OF THE NFAT FAMILY:Regulation and Function. Annual Review of Immunology, 1997, 15, 707-747.	21.8	2,417
48	Molecular Identification of a Major Retinoic-Acid-Synthesizing Enzyme, a Retinaldehyde-Specific Dehydrogenase. FEBS Journal, 1996, 240, 15-22.	0.2	306
49	A Similar DNA-binding Motif in NFAT Family Proteins and the Rel Homology Region. Journal of Biological Chemistry, 1995, 270, 4138-4145.	3.4	126
50	Isolation of the Cyclosporin-Sensitive T Cell Transcription Factor NFATp. Science, 1993, 262, 750-754.	12.6	407
51	Muscle activity decreases rate of degradation of α-bungarotoxin bound to extrajunctional acetylcholine receptors. Nature, 1976, 261, 328-330.	27.8	39