Wilber Romero-Fernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2331584/publications.pdf

Version: 2024-02-01

41 papers 1,813 citations

304368 22 h-index 288905 40 g-index

41 all docs

41 docs citations

41 times ranked

1938 citing authors

#	Article	IF	CITATIONS
1	Evidence for the existence of dopamine d2-oxytocin receptor heteromers in the ventral and dorsal striatum with facilitatory receptor–receptor interactions. Molecular Psychiatry, 2013, 18, 849-850.	4.1	147
2	The G Protein-Coupled Receptor Heterodimer Network (GPCR-HetNet) and Its Hub Components. International Journal of Molecular Sciences, 2014, 15, 8570-8590.	1.8	124
3	Fibroblast Growth Factor Receptor 1– 5-Hydroxytryptamine 1A Heteroreceptor Complexes and Their Enhancement of Hippocampal Plasticity. Biological Psychiatry, 2012, 71, 84-91.	0.7	118
4	G Protein–Coupled Receptor Heterodimerization in the Brain. Methods in Enzymology, 2013, 521, 281-294.	0.4	110
5	Moonlighting Proteins and Protein–Protein Interactions as Neurotherapeutic Targets in the G Protein-Coupled Receptor Field. Neuropsychopharmacology, 2014, 39, 131-155.	2.8	101
6	Characterization of the A2AR–D2R interface: Focus on the role of the C-terminal tail and the transmembrane helices. Biochemical and Biophysical Research Communications, 2010, 402, 801-807.	1.0	93
7	Dopamine D2 and D4 receptor heteromerization and its allosteric receptor–receptor interactions. Biochemical and Biophysical Research Communications, 2011, 404, 928-934.	1.0	88
8	Dopamine D2 and 5-hydroxytryptamine 5-HT2A receptors assemble into functionally interacting heteromers. Biochemical and Biophysical Research Communications, 2010, 401, 605-610.	1.0	87
9	GPCR Heteromers and their Allosteric Receptor-Receptor Interactions. Current Medicinal Chemistry, 2012, 19, 356-363.	1.2	83
10	Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes. Biochemical and Biophysical Research Communications, 2014, 443, 278-284.	1.0	78
11	On the Existence of a Possible A2A–D2–β-Arrestin2 Complex: A2A Agonist Modulation of D2 Agonist-Induced β-Arrestin2 Recruitment. Journal of Molecular Biology, 2011, 406, 687-699.	2.0	76
12	Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks. Frontiers in Physiology, 2012, 3, 136.	1.3	67
13	On the role of volume transmission and receptor–receptor interactions in social behaviour: Focus on central catecholamine and oxytocin neurons. Brain Research, 2012, 1476, 119-131.	1.1	65
14	Mapping the Interface of a GPCR Dimer: A Structural Model of the A2A Adenosine and D2 Dopamine Receptor Heteromer. Frontiers in Pharmacology, 2018, 9, 829.	1.6	62
15	Volume transmission and its different forms in the central nervous system. Chinese Journal of Integrative Medicine, 2013, 19, 323-329.	0.7	58
16	On the existence and function of galanin receptor heteromers in the central nervous system. Frontiers in Endocrinology, 2012, 3, 127.	1.5	57
17	Dopamine D2 receptor signaling dynamics of dopamine D2-neurotensin 1 receptor heteromers. Biochemical and Biophysical Research Communications, 2013, 435, 140-146.	1.0	44
18	Diversity and Bias through Receptorââ,¬â€œReceptor Interactions in GPCR Heteroreceptor Complexes. Focus on Examples from Dopamine D2 Receptor Heteromerization. Frontiers in Endocrinology, 2014, 5, 71.	1.5	44

#	Article	IF	Citations
19	Receptor–Receptor Interactions in Multiple 5-HT1A Heteroreceptor Complexes in Raphe-Hippocampal 5-HT Transmission and Their Relevance for Depression and Its Treatment. Molecules, 2018, 23, 1341.	1.7	38
20	Dopamine D2 heteroreceptor complexes and their receptor–receptor interactions in ventral striatum. Progress in Brain Research, 2014, 211, 113-139.	0.9	37
21	Dopamine D ₄ receptor oligomerization – contribution to receptor biogenesis. FEBS Journal, 2011, 278, 1333-1344.	2.2	30
22	Muscarinic receptor family interacting proteins: Role in receptor function. Journal of Neuroscience Methods, 2011, 195, 161-169.	1.3	25
23	Agonist-induced formation of FGFR1 homodimers and signaling differ among members of the FGF family. Biochemical and Biophysical Research Communications, 2011, 409, 764-768.	1.0	22
24	Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons. European Journal of Histochemistry, 2014, 58, 2400.	0.6	19
25	The Existence of FGFR1-5-HT1A Receptor Heterocomplexes in Midbrain 5-HT Neurons of the Rat: Relevance for Neuroplasticity. Journal of Neuroscience, 2012, 32, 6295-6303.	1.7	17
26	Dissecting the Conserved NPxxY Motif of the M ₃ Muscarinic Acetylcholine Receptor: Critical Role of Asp-7.49 for Receptor Signaling and Multiprotein Complex Formation. Cellular Physiology and Biochemistry, 2011, 28, 1009-1022.	1.1	15
27	On the G-Protein-Coupled Receptor Heteromers and Their Allosteric Receptor-Receptor Interactions in the Central Nervous System: Focus on Their Role in Pain Modulation. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-17.	0.5	15
28	Altered trafficking and unfolded protein response induction as a result of M3 muscarinic receptor impaired N-glycosylation. Glycobiology, 2011, 21, 1663-1672.	1.3	13
29	Acute Cocaine Enhances Dopamine D2R Recognition and Signaling and Counteracts D2R Internalization in Sigma1R-D2R Heteroreceptor Complexes. Molecular Neurobiology, 2019, 56, 7045-7055.	1.9	11
30	G-Protein-Coupled Receptors Oligomerization: Emerging Signaling Units and New Opportunities for Drug Design. Current Protein and Peptide Science, 2014, 15, 648-658.	0.7	10
31	OSU-6162, a Sigma1R Ligand in Low Doses, Can Further Increase the Effects of Cocaine Self-Administration on Accumbal D2R Heteroreceptor Complexes. Neurotoxicity Research, 2020, 37, 433-444.	1.3	9
32	Differential expression of muscarinic acetylcholine receptor subtypes in Jurkat cells and their signaling. Journal of Neuroimmunology, 2011, 237, 13-22.	1.1	8
33	The Balance of MU-Opioid, Dopamine D2 and Adenosine A2A Heteroreceptor Complexes in the Ventral Striatal-Pallidal GABA Antireward Neurons May Have a Significant Role in Morphine and Cocaine Use Disorders. Frontiers in Pharmacology, 2021, 12, 627032.	1.6	8
34	El 1, 2, 3 de la experimentaci \tilde{A}^3 n con animales de laboratorio. Revista Peruana De Medicina De Experimental Y Salud Publica, 2016, 33, 288.	0.1	7
35	Acute cocaine treatment enhances the antagonistic allosteric adenosine A2A-dopamine D2 receptor–receptor interactions in rat dorsal striatum without increasing significantly extracellular dopamine levels. Pharmacological Reports, 2020, 72, 332-339.	1.5	7
36	A2AR Transmembrane 2 Peptide Administration Disrupts the A2AR-A2AR Homoreceptor but not the A2AR-D2R Heteroreceptor Complex: Lack of Actions on Rodent Cocaine Self-Administration. International Journal of Molecular Sciences, 2019, 20, 6100.	1.8	6

#	Article	IF	CITATIONS
37	Role of Dimerization in Dopamine D ₄ Receptor Biogenesis. Current Protein and Peptide Science, 2014, 15, 659-665.	0.7	5
38	Overproduction of human M ₃ muscarinic acetylcholine receptor: An approach toward structural studies. Biotechnology Progress, 2011, 27, 838-845.	1.3	3
39	Increased density and antagonistic allosteric interactions in A2AR-D2R heterocomplexes in extinction from cocaine use, lost in cue induced reinstatement of cocaine seeking. Pharmacology Biochemistry and Behavior, 2022, 215, 173375.	1.3	3
40	The mGlu5 Receptor Protomer-Mediated Dopamine D2 Receptor Trans-Inhibition Is Dependent on the Adenosine A2A Receptor Protomer: Implications for Parkinson's Disease. Molecular Neurobiology, 2022, 59, 5955-5969.	1.9	3
41	Co-immunoprecipitation of Membrane-Bound Receptors from Subsynaptic Compartments. Neuromethods, 2019, , 137-145.	0.2	0