
José MarÃ-a Pérez Pomares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/233154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A New Versatile Platform for Assessment of Improved Cardiac Performance in Human-Engineered Heart Tissues. Journal of Personalized Medicine, 2022, 12, 214.	1.1	8
2	In Vivo and In Vitro Cartilage Differentiation from Embryonic Epicardial Progenitor Cells. International Journal of Molecular Sciences, 2022, 23, 3614.	1.8	2
3	Bone marrow contribution to the heart from development to adulthood. Seminars in Cell and Developmental Biology, 2021, 112, 16-26.	2.3	2
4	Fsp1 cardiac embryonic expression delineates atrioventricular endocardial cushion, coronary venous and lymphatic valve development. Journal of Anatomy, 2021, 238, 508-514.	0.9	3
5	Understanding the Adult Mammalian Heart at Single-Cell RNA-Seq Resolution. Frontiers in Cell and Developmental Biology, 2021, 9, 645276.	1.8	11
6	Training biochemistry students in experimental developmental biology: Induction of cardia bifida formation in the chick embryo. Biochemistry and Molecular Biology Education, 2021, 49, 782-788.	0.5	0
7	Indolenine-Based Derivatives as Customizable Two-Photon Fluorescent Probes for pH Bioimaging in Living Cells. ACS Sensors, 2020, 5, 1068-1074.	4.0	16
8	Proepicardial Origin of Developing Coronary Vessels. Revista Espanola De Cardiologia (English Ed), 2019, 72, 163.	0.4	1
9	Synthesis of Amino Terminal Clicked Dendrimers. Approaches to the Application as a Biomarker. Journal of Organic Chemistry, 2019, 84, 10197-10208.	1.7	5
10	Cellular identities in an unusual presentation of cyclopia in a chick embryo. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2019, 332, 179-186.	0.6	3
11	Platinum-Doped Dendritic Structure as a Phosphorescent Label for Bacteria in Two-Photon Excitation Microscopy. ACS Omega, 2019, 4, 13027-13033.	1.6	7
12	A turn-on two-photon fluorescent probe for detecting lysosomal hydroxyl radicals in living cells. Sensors and Actuators B: Chemical, 2019, 284, 744-750.	4.0	18
13	Cell-based therapies for the treatment of myocardial infarction: lessons from cardiac regeneration and repair mechanisms in non-human vertebrates. Heart Failure Reviews, 2019, 24, 133-142.	1.7	12
14	Development of the Myocardial Interstitium. Anatomical Record, 2019, 302, 58-68.	0.8	8
15	Myocardial Bmp2 gain causes ectopic EMT and promotes cardiomyocyte proliferation and immaturity. Cell Death and Disease, 2018, 9, 399.	2.7	24
16	Avian embryonic coronary arterioâ€venous patterning involves the contribution of different endothelial and endocardial cell populations. Developmental Dynamics, 2018, 247, 686-698.	0.8	9
17	Bmi1-Progenitor Cell Ablation Impairs the Angiogenic Response to Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2160-2173.	1.1	11
18	Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells. Stem Cell Reports, 2017, 9, 1754-1764.	2.3	55

2

#	Article	IF	CITATIONS
19	Cardiac electrical defects in progeroid mice and Hutchinson–Gilford progeria syndrome patients with nuclear lamina alterations. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7250-E7259.	3.3	39
20	Molecular Pathways and Animal Models of Coronary Artery Anomalies. , 2016, , 541-552.		1
21	Epicardium and Coronary Arteries. , 2016, , 63-70.		0
22	Congenital coronary artery anomalies: a bridge from embryology to anatomy and pathophysiology—a position statement of the development, anatomy, and pathology ESC Working Group. Cardiovascular Research, 2016, 109, 204-216.	1.8	143
23	Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio–venous connections. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 656-661.	3.3	99
24	A chick embryo cryoinjury model for the study of embryonic organ development and repair. Differentiation, 2016, 91, 72-77.	1.0	7
25	Interacting Resident Epicardium-Derived Fibroblasts and Recruited Bone Marrow Cells Form Myocardial Infarction Scar. Journal of the American College of Cardiology, 2015, 65, 2057-2066.	1.2	124
26	P347Epicardial-derived interstitial fibroblasts and bone marrow-derived cell interaction determines post-infarction ventricular remodeling. Cardiovascular Research, 2014, 103, S63.3-S63.	1.8	0
27	P314Ontogenetic contribution of mesodermal pro/epicardial cell lineages to coronary endothelium. Cardiovascular Research, 2014, 103, S57.2-S57.	1.8	0
28	Characterization of Epicardial-Derived Cardiac Interstitial Cells: Differentiation and Mobilization of Heart Fibroblast Progenitors. PLoS ONE, 2013, 8, e53694.	1.1	38
29	The Epicardium and Coronary Artery Formation. Journal of Developmental Biology, 2013, 1, 186-202.	0.9	7
30	The expanding role of the epicardium and epicardial-derived cells in cardiac development and disease. Current Opinion in Pediatrics, 2012, 24, 569-576.	1.0	19
31	Poster session 2. Cardiovascular Research, 2012, 93, S52-S87.	1.8	3
32	Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Developmental Biology, 2012, 366, 111-124.	0.9	208
33	Early Embryonic Vascular Patterning by Matrix-Mediated Paracrine Signalling: A Mathematical Model Study. PLoS ONE, 2011, 6, e24175.	1.1	57
34	Signaling During Epicardium and Coronary Vessel Development. Circulation Research, 2011, 109, 1429-1442.	2.0	122
35	Differential Notch Signaling in the Epicardium Is Required for Cardiac Inflow Development and Coronary Vessel Morphogenesis. Circulation Research, 2011, 108, 824-836.	2.0	149
36	Wt1 controls retinoic acid signalling in embryonic epicardium through transcriptional activation of Raldh2. Development (Cambridge), 2011, 138, 1093-1097.	1.2	110

José MarÃa Pérez Pomar

#	Article	IF	CITATIONS
37	Cardiogenesis: An Embryological Perspective. Journal of Cardiovascular Translational Research, 2010, 3, 37-48.	1.1	15
38	The embryonic epicardium: an essential element of cardiac development. Journal of Cellular and Molecular Medicine, 2010, 14, 2066-2072.	1.6	47
39	Signaling Pathways in Valve Formation. , 2010, , 389-413.		1
40	Polyamines Are Present in Mast Cell Secretory Granules and Are Important for Granule Homeostasis. PLoS ONE, 2010, 5, e15071.	1.1	49
41	Retinoic Acid and VEGF Delay Smooth Muscle Relative to Endothelial Differentiation to Coordinate Inner and Outer Coronary Vessel Wall Morphogenesis. Circulation Research, 2010, 107, 204-216.	2.0	52
42	Origin of the Vertebrate Endothelial Cell Lineage. , 2010, , 465-486.		3
43	Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. Journal of Clinical Investigation, 2010, 120, 3493-3507.	3.9	201
44	Building the vertebrate heart - an evolutionary approach to cardiac development. International Journal of Developmental Biology, 2009, 53, 1427-1443.	0.3	44
45	MODELLING VASCULAR MORPHOGENESIS: CURRENT VIEWS ON BLOOD VESSELS DEVELOPMENT. Mathematical Models and Methods in Applied Sciences, 2009, 19, 1483-1537.	1.7	19
46	Epicardial development in lamprey supports an evolutionary origin of the vertebrate epicardium from an ancestral pronephric external glomerulus. Evolution & Development, 2008, 10, 210-216.	1.1	37
47	Myocardial–Coronary Interactions. Circulation Research, 2008, 102, 513-515.	2.0	3
48	Embryonic Epicardial Cell Lineages: Making and Unmaking a Heart. FASEB Journal, 2008, 22, 384.3.	0.2	0
49	Notch Signaling Is Essential for Ventricular Chamber Development. Developmental Cell, 2007, 12, 415-429.	3.1	422
50	Wt1 and retinoic acid signaling are essential for stellate cell development and liver morphogenesis. Developmental Biology, 2007, 312, 157-170.	0.9	112
51	A simple technique of image analysis for specific nuclear immunolocalization of proteins. Journal of Microscopy, 2007, 225, 96-99.	0.8	24
52	BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Developmental Biology, 2006, 295, 507-522.	0.9	157
53	Tissue fusion and cell sorting in embryonic development and disease: biomedical implications. BioEssays, 2006, 28, 809-821.	1.2	106
54	In vitro self-assembly of proepicardial cell aggregates: An embryonic vasculogenic model for vascular tissue engineering. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 700-713.	2.0	25

#	Article	IF	CITATIONS
55	In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells. Developmental Dynamics, 2006, 235, 1014-1026.	0.8	89
56	The origin of the endothelial cells: an evo-devo approach for the invertebrate/vertebrate transition of the circulatory system. Evolution & Development, 2005, 7, 351-358.	1.1	83
57	The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. , 2004, 276A, 43-57.		271
58	Contribution of mesothelium-derived cells to liver sinusoids in avian embryos. Developmental Dynamics, 2004, 229, 465-474.	0.8	63
59	Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes and Development, 2004, 18, 99-115.	2.7	820
60	A modified Chorioallantoic Membrane Assay Allows for Specific Detection of Endothelial Apoptosis Induced by Antiangiogenic Substances. Angiogenesis, 2003, 6, 251-254.	3.7	20
61	Epicardial-like cells on the distal arterial end of the cardiac outflow tract do not derive from the proepicardium but are derivatives of the cephalic pericardium. Developmental Dynamics, 2003, 227, 56-68.	0.8	62
62	Development of the coronary arteries in a murine model of transposition of great arteries. Journal of Molecular and Cellular Cardiology, 2003, 35, 795-802.	0.9	47
63	Experimental Studies on the Spatiotemporal Expression of WT1 and RALDH2 in the Embryonic Avian Heart: A Model for the Regulation of Myocardial and Valvuloseptal Development by Epicardially Derived Cells (EPDCs). Developmental Biology, 2002, 247, 307-326.	0.9	209
64	Epithelial-mesenchymal transitions: A mesodermal cell strategy for evolutive innovation in Metazoans. The Anatomical Record, 2002, 268, 343-351.	2.3	86
65	Cellular precursors of the coronary arteries. Texas Heart Institute Journal, 2002, 29, 243-9.	0.1	44
66	The Origin, Formation and Developmental Significance of the Epicardium: A Review. Cells Tissues Organs, 2001, 169, 89-103.	1.3	278
67	Localization of the Wilms' tumour protein WT1 in avian embryos. Cell and Tissue Research, 2001, 303, 173-186.	1.5	75
68	Immunolocalization of the transcription factor Slug in the developing avian heart. Anatomy and Embryology, 2000, 201, 103-109.	1.5	39
69	Epithelial-mesenchymal transitions in the developing heart of the dogfish (Scyliorhinus canicula). A scanning electron microscopic study. Acta Zoologica, 1999, 80, 231-239.	0.6	0
70	Immunohistochemical evidence for a mesothelial contribution to the ventral wall of the avian aorta. The Histochemical Journal, 1999, 31, 771-779.	0.6	17
71	Differentiation of hemangioblasts from embryonic mesothelial cells? A model on the origin of the vertebrate cardiovascular system. Differentiation, 1999, 64, 133-141.	1.0	50
72	Differentiation of hemangioblasts from embryonic mesothelial cells? A model on the origin of the vertebrate cardiovascular system. Differentiation, 1999, 64, 133.	1.0	46

# ARTICLE	IF	CITATIONS
Immunolocalization of the 73 mesenchyme of hamster er Journal, 1998, 30, 627-634	vascular endothelial growth factor receptor-2 in the subepicardial nbryos: identification of the coronary vessel precursors. The Histochemical 0.6	22
74 Immunohistochemical Stuc (<i>Scyliorhinus canicula<!--</td--><th>dy of the Origin of the Subepicardial Mesenchyme in the Dogfish i>). Acta Zoologica, 1998, 79, 335-342. 0.6</th><td>5</td></i>	dy of the Origin of the Subepicardial Mesenchyme in the Dogfish i>). Acta Zoologica, 1998, 79, 335-342. 0.6	5
75 Immunoreactivity of the et transition in the developing	s-1 transcription factor correlates with areas of epithelial-mesenchymal g avian heart. Anatomy and Embryology, 1998, 198, 307-315.	33
76 The Origin of the Subepica Quail–Chick Chimera Stu	rdial Mesenchyme in the Avian Embryo: An Immunohistochemical and 0.9 Idy. Developmental Biology, 1998, 200, 57-68.	151
Contribution of the primitiv embryos. , 1997, 210, 96-1	ve epicardium to the subepicardial mesenchyme in hamster and chick 05.	112