Yang Bao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2331425/publications.pdf

Version: 2024-02-01

394421 642732 1,777 26 19 23 h-index citations g-index papers 26 26 26 3767 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A two-dimensional conjugated aromatic polymer via C–C coupling reaction. Nature Chemistry, 2017, 9, 563-570.	13.6	306
2	Atomically precise bottom-up synthesis of π-extended [5]triangulene. Science Advances, 2019, 5, eaav7717.	10.3	159
3	A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water. Nature Communications, 2018, 9, 76.	12.8	151
4	Gate-Tunable Giant Stark Effect in Few-Layer Black Phosphorus. Nano Letters, 2017, 17, 1970-1977.	9.1	144
5	Gate-Tunable In-Plane Ferroelectricity in Few-Layer SnS. Nano Letters, 2019, 19, 5109-5117.	9.1	129
6	Surface Functionalization of Black Phosphorus via Potassium toward High-Performance Complementary Devices. Nano Letters, 2017, 17, 4122-4129.	9.1	117
7	Tailoring sample-wide pseudo-magnetic fields on a graphene–black phosphorus heterostructure. Nature Nanotechnology, 2018, 13, 828-834.	31.5	113
8	Two-Dimensional Polymer Synthesized <i>via</i> Solid-State Polymerization for High-Performance Supercapacitors. ACS Nano, 2018, 12, 852-860.	14.6	91
9	Periodic Grain Boundaries Formed by Thermal Reconstruction of Polycrystalline Graphene Film. Journal of the American Chemical Society, 2014, 136, 12041-12046.	13.7	63
10	Grapheneâ€Oxideâ€Catalyzed Direct CHâ^'CHâ€Type Crossâ€Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie - International Edition, 2018, 57, 10848-10853.	13.8	63
11	Observation of Gap Opening in 1T′ Phase MoS ₂ Nanocrystals. Nano Letters, 2018, 18, 5085-5090.	9.1	60
12	Oscillating edge states in one-dimensional MoS2 nanowires. Nature Communications, 2016, 7, 12904.	12.8	57
13	Exploring Low Power and Ultrafast Memristor on p-Type van der Waals SnS. Nano Letters, 2021, 21, 8800-8807.	9.1	57
14	Large Area Synthesis of 1Dâ€MoSe ₂ Using Molecular Beam Epitaxy. Advanced Materials, 2017, 29, 1605641.	21.0	54
15	Properties of Strained Structures and Topological Defects in Graphene. ACS Nano, 2013, 7, 8350-8357.	14.6	49
16	Anisotropic Third-Order Nonlinearity in Pristine and Lithium Hydride Intercalated Black Phosphorus. ACS Photonics, 2018, 5, 4969-4977.	6.6	40
17	A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation. Nature Communications, 2020, 11, 1633.	12.8	40
18	Substoichiometric Molybdenum Sulfide Phases with Catalytically Active Basal Planes. Journal of the American Chemical Society, 2016, 138, 14121-14128.	13.7	28

#	Article	IF	CITATIONS
19	Hydrogen Evolution Catalyzed by a Molybdenum Sulfide Two-Dimensional Structure with Active Basal Planes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22042-22049.	8.0	22
20	Controllable Synthesis of 2D and 1D MoS ₂ Nanostructures on Au Surface. Advanced Functional Materials, 2017, 27, 1603887.	14.9	15
21	Grapheneâ€Oxideâ€Catalyzed Direct CHâ^'CHâ€Type Crossâ€Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie, 2018, 130, 11014-11019.	2.0	11
22	Orientation and Electronic Structures of Multilayered Graphene Nanoribbons Produced by Two-Zone Chemical Vapor Deposition. Langmuir, 2017, 33, 10439-10445.	3.5	6
23	The Flexible On-Surface Self-Assembly of a Low-Symmetry Mabiq Ligand: An Unconventional Metal-Assisted Phase Transformation on Ag(111). Journal of Physical Chemistry C, 2021, 125, 23178-23191.	3.1	2
24	Abnormal behavior of potassium adsorbed phosphorene. International Journal of Computational Materials Science and Engineering, 2017, 06, 1850002.	0.7	0
25	Frontispiz: Graphene-Oxide-Catalyzed Direct CHâ^'CH-Type Cross-Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie, 2018, 130, .	2.0	0
26	Frontispiece: Graphene-Oxide-Catalyzed Direct CHâ^'CH-Type Cross-Coupling: The Intrinsic Catalytic Activities of Zigzag Edges. Angewandte Chemie - International Edition, 2018, 57, .	13.8	0