Peng Gao

List of Publications by Citations

Source: https://exaly.com/author-pdf/2331282/peng-gao-publications-by-citations.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

333	19,762	57	136
papers	citations	h-index	g-index
359 ext. papers	23,858 ext. citations	12.4 avg, IF	6.99 L-index

#	Paper	IF	Citations
333	Sequential deposition as a route to high-performance perovskite-sensitized solar cells. <i>Nature</i> , 2013 , 499, 316-9	50.4	7488
332	Observation of conducting filament growth in nanoscale resistive memories. <i>Nature Communications</i> , 2012 , 3, 732	17.4	782
331	Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. <i>ACS Nano</i> , 2014 , 8, 362-73	16.7	617
330	Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. <i>Nature Communications</i> , 2014 , 5, 4232	17.4	411
329	Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. <i>Science Bulletin</i> , 2017 , 62, 1074-1080	10.6	326
328	Domain dynamics during ferroelectric switching. <i>Science</i> , 2011 , 334, 968-71	33.3	277
327	Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. <i>Nature Nanotechnology</i> , 2016 , 11, 930-935	28.7	277
326	Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. <i>Nature Communications</i> , 2019 , 10, 631	17.4	260
325	Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. <i>Nature</i> , 2019 , 570, 91-95	50.4	247
324	Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. <i>Nature Communications</i> , 2018 , 9, 979	17.4	224
323	Stable High-Index Faceted Pt Skin on Zigzag-Like PtFe Nanowires Enhances Oxygen Reduction Catalysis. <i>Advanced Materials</i> , 2018 , 30, 1705515	24	223
322	Hyperporous Sponge Interconnected by Hierarchical Carbon Nanotubes as a High-Performance Potassium-Ion Battery Anode. <i>Advanced Materials</i> , 2018 , 30, e1802074	24	198
321	Vertical Graphene Growth on SiO Microparticles for Stable Lithium Ion Battery Anodes. <i>Nano Letters</i> , 2017 , 17, 3681-3687	11.5	185
320	Revealing the role of defects in ferroelectric switching with atomic resolution. <i>Nature Communications</i> , 2011 , 2, 591	17.4	184
319	Thermal Emitting Strategy to Synthesize Atomically Dispersed Pt Metal Sites from Bulk Pt Metal. Journal of the American Chemical Society, 2019 , 141, 4505-4509	16.4	174
318	Origins of Large Voltage Hysteresis in High-Energy-Density Metal Fluoride Lithium-Ion Battery Conversion Electrodes. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2838-48	16.4	166
317	Ultrafast Sodium/Potassium-Ion Intercalation into Hierarchically Porous Thin Carbon Shells. <i>Advanced Materials</i> , 2019 , 31, e1805430	24	148

(2019-2017)

316	Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. <i>Journal of Power Sources</i> , 2017 , 342, 175-182	8.9	145
315	Atomic-Scale Probing of the Dynamics of Sodium Transport and Intercalation-Induced Phase Transformations in MoSIIACS Nano, 2015 , 9, 11296-301	16.7	136
314	Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. <i>Journal of Power Sources</i> , 2019 , 409, 24-30	8.9	135
313	A 3D Trilayered CNT/MoSe2/C Heterostructure with an Expanded MoSe2 Interlayer Spacing for an Efficient Sodium Storage. <i>Advanced Energy Materials</i> , 2019 , 9, 1900567	21.8	132
312	Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching. <i>Nature Communications</i> , 2013 , 4,	17.4	128
311	Controlled Synthesis of Core-Shell Carbon@MoS Nanotube Sponges as High-Performance Battery Electrodes. <i>Advanced Materials</i> , 2016 , 28, 10175-10181	24	126
310	Li-free Cathode Materials for High Energy Density Lithium Batteries. <i>Joule</i> , 2019 , 3, 2086-2102	27.8	123
309	Iridium-Tungsten Alloy Nanodendrites as pH-Universal Water-Splitting Electrocatalysts. <i>ACS Central Science</i> , 2018 , 4, 1244-1252	16.8	123
308	Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite. <i>Nature Communications</i> , 2018 , 9, 4807	17.4	113
307	Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates. <i>ACS Nano</i> , 2017 , 11, 12337-12345	16.7	112
306	Long-distance propagation of short-wavelength spin waves. <i>Nature Communications</i> , 2018 , 9, 738	17.4	111
305	Ferroelastic domain switching dynamics under electrical and mechanical excitations. <i>Nature Communications</i> , 2014 , 5, 3801	17.4	110
304	Surface passivation and band engineering: a way toward high efficiency grapheneplanar Si solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8567	13	108
303	Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls. <i>Nature Nanotechnology</i> , 2018 , 13, 947-952	28.7	104
302	TiS2 as a high performance potassium ion battery cathode in ether-based electrolyte. <i>Energy Storage Materials</i> , 2018 , 12, 216-222	19.4	102
301	Ultrathin CsPbX Nanowire Arrays with Strong Emission Anisotropy. <i>Advanced Materials</i> , 2018 , 30, e180	18:045	95
300	Novel Pliable Electrodes for Flexible Electrochemical Energy Storage Devices: Recent Progress and Challenges. <i>Advanced Energy Materials</i> , 2016 , 6, 1600490	21.8	95
299	Towards super-clean graphene. <i>Nature Communications</i> , 2019 , 10, 1912	17.4	89

Layered-Structure SbPO/Reduced Graphene Oxide: An Advanced Anode Material for Sodium Ion

60

Batteries. ACS Nano, 2018, 12, 12869-12878

(2021-2019)

280	Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate. <i>Applied Physics Letters</i> , 2019 , 114, 091107	3.4	59	
279	Millimeter-Scale Single-Crystalline Semiconducting MoTe via Solid-to-Solid Phase Transformation. Journal of the American Chemical Society, 2019 , 141, 2128-2134	16.4	59	
278	Tunable Free-Standing Core-Shell CNT@MoSe Anode for Lithium Storage. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 14622-14631	9.5	58	
277	A native oxide high-gate dielectric for two-dimensional electronics. <i>Nature Electronics</i> , 2020 , 3, 473-478	3 28.4	58	
276	SnP2O7 Covered Carbon Nanosheets as a Long-Life and High-Rate Anode Material for Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1804672	15.6	57	
275	Room-temperature polar ferromagnet ScFeO3 transformed from a high-pressure orthorhombic perovskite phase. <i>Journal of the American Chemical Society</i> , 2014 , 136, 15291-9	16.4	56	
274	High-Yield Production of MoS and WS Quantum Sheets from Their Bulk Materials. <i>Nano Letters</i> , 2017 , 17, 7767-7772	11.5	56	
273	Low Residual Carrier Concentration and High Mobility in 2D Semiconducting BiOSe. <i>Nano Letters</i> , 2019 , 19, 197-202	11.5	56	
272	Precise control of the interlayer twist angle in large scale MoS homostructures. <i>Nature Communications</i> , 2020 , 11, 2153	17.4	55	
271	Atomic-Scale Measurement of Flexoelectric Polarization at SrTiO_{3} Dislocations. <i>Physical Review Letters</i> , 2018 , 120, 267601	7.4	55	
270	Densification by Compaction as an Effective Low-Cost Method to Attain a High Areal Lithium Storage Capacity in a CNT@Co3O4 Sponge. <i>Advanced Energy Materials</i> , 2018 , 8, 1702981	21.8	54	
269	Fast Growth of Strain-Free AlN on Graphene-Buffered Sapphire. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11935-11941	16.4	54	
268	Graphene-Armored Aluminum Foil with Enhanced Anticorrosion Performance as Current Collectors for Lithium-Ion Battery. <i>Advanced Materials</i> , 2017 , 29, 1703882	24	53	
267	Switching Vertical to Horizontal Graphene Growth Using Faraday Cage-Assisted PECVD Approach for High-Performance Transparent Heating Device. <i>Advanced Materials</i> , 2018 , 30, 1704839	24	53	
266	Origin of the metal-insulator transition in ultrathin films of La2/3Sr1/3MnO3. <i>Physical Review B</i> , 2015 , 92,	3.3	53	
265	Constructing CsPbBr3 Cluster Passivated-Triple Cation Perovskite for Highly Efficient and Operationally Stable Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1809180	15.6	52	
264	Atomic scale structure changes induced by charged domain walls in ferroelectric materials. <i>Nano Letters</i> , 2013 , 13, 5218-23	11.5	52	
263	Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe. <i>Science</i> , 2021 , 372, 195-200	33.3	52	

262	Enhancement of Heat Dissipation in Ultraviolet Light-Emitting Diodes by a Vertically Oriented Graphene Nanowall Buffer Layer. <i>Advanced Materials</i> , 2019 , 31, e1901624	24	51
261	Rice husk derived carbonBilica composites as anodes for lithium ion batteries. <i>RSC Advances</i> , 2014 , 4, 64744-64746	3.7	51
260	A Dual Protection System for Heterostructured 3D CNT/CoSe/C as High Areal Capacity Anode for Sodium Storage. <i>Advanced Science</i> , 2020 , 7, 1902907	13.6	50
259	Structure Tracking Aided Design and Synthesis of Li3V2(PO4)3 Nanocrystals as High-Power Cathodes for Lithium Ion Batteries. <i>Chemistry of Materials</i> , 2015 , 27, 5712-5718	9.6	48
258	Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films. <i>Nature Communications</i> , 2016 , 7, 11318	17.4	48
257	High-Resolution Tracking Asymmetric Lithium Insertion and Extraction and Local Structure Ordering in SnS2. <i>Nano Letters</i> , 2016 , 16, 5582-8	11.5	48
256	Direct observations of retention failure in ferroelectric memories. <i>Advanced Materials</i> , 2012 , 24, 1106-1	1024	47
255	Intermetallic Pd3Pb Nanoplates Enhance Oxygen Reduction Catalysis with Excellent Methanol Tolerance. <i>Small Methods</i> , 2018 , 2, 1700331	12.8	46
254	Palladium Single Atoms on TiO as a Photocatalytic Sensing Platform for Analyzing the Organophosphorus Pesticide Chlorpyrifos. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 232-23	6 ^{16.4}	46
253	3D star-like atypical hybrid MOF derived single-atom catalyst boosts oxygen reduction catalysis. <i>Journal of Energy Chemistry</i> , 2021 , 55, 355-360	12	46
252	Bioactive Functionalized Monolayer Graphene for High-Resolution Cryo-Electron Microscopy. Journal of the American Chemical Society, 2019 , 141, 4016-4025	16.4	44
251	Single crystalline CH3NH3PbI3 self-grown on FTO/TiO2 substrate for high efficiency perovskite solar cells. <i>Science Bulletin</i> , 2017 , 62, 1173-1176	10.6	44
250	Current-controlled propagation of spin waves in antiparallel, coupled domains. <i>Nature Nanotechnology</i> , 2019 , 14, 691-697	28.7	43
249	A three-dimensional interconnected V6O13 nest with a V5+-rich state for ultrahigh Zn ion storage. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 10370-10376	13	39
248	Achieving electronic structure reconfiguration in metallic carbides for robust electrochemical water splitting. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 2453-2462	13	38
247	Picometer-scale atom position analysis in annular bright-field STEM imaging. <i>Ultramicroscopy</i> , 2018 , 184, 177-187	3.1	37
246	Chiral Spin-Wave Velocities Induced by All-Garnet Interfacial Dzyaloshinskii-Moriya Interaction in Ultrathin Yttrium Iron Garnet Films. <i>Physical Review Letters</i> , 2020 , 124, 027203	7.4	36
245	Giant Ferroelectric Polarization in Ultrathin Ferroelectrics via Boundary-Condition Engineering. Advanced Materials, 2017, 29, 1701475	24	35

244	Defect-Induced Hedgehog Polarization States in Multiferroics. <i>Physical Review Letters</i> , 2018 , 120, 13760) ≱.4	34	
243	Au Clusters on Pd Nanosheets Selectively Switch the Pathway of Ethanol Electrooxidation: Amorphous/Crystalline Interface Matters. <i>Advanced Energy Materials</i> , 2021 , 11, 2100187	21.8	34	
242	Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. <i>Nature Materials</i> , 2021 , 20, 43-48	27	34	
241	Atomic-scale structure relaxation, chemistry and charge distribution of dislocation cores in SrTiO. <i>Ultramicroscopy</i> , 2018 , 184, 217-224	3.1	33	
240	Reticulate Dual-Nanowire Aerogel for Multifunctional Applications: a High-Performance Strain Sensor and a High Areal Capacity Rechargeable Anode. <i>Advanced Functional Materials</i> , 2019 , 29, 180746	1 5.6	33	
239	Grouping Effect of Single Nickel-N Sites in Nitrogen-Doped Carbon Boosts Hydrogen Transfer Coupling of Alcohols and Amines. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15194-15198	16.4	33	
238	Epitaxial array of Fe3O4 nanodots for high rate high capacity conversion type lithium ion batteries electrode with long cycling life. <i>Nano Energy</i> , 2020 , 74, 104876	17.1	31	
237	Interlayer Decoupling in 30° Twisted Bilayer Graphene Quasicrystal. <i>ACS Nano</i> , 2020 , 14, 1656-1664	16.7	31	
236	Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS monolayer on vicinal a-plane sapphire. <i>Nature Nanotechnology</i> , 2021 ,	28.7	31	
235	Atomic structure and migration dynamics of MoS2/LixMoS2 interface. <i>Nano Energy</i> , 2018 , 48, 560-568	17.1	30	
234	Identifying the Conversion Mechanism of NiCo2O4 during Sodiation Desodiation Cycling by In Situ TEM. <i>Advanced Functional Materials</i> , 2017 , 27, 1606163	15.6	29	
233	Molecular Beam Epitaxy and Electronic Structure of Atomically Thin Oxyselenide Films. <i>Advanced Materials</i> , 2019 , 31, e1901964	24	29	
232	Ultrahigh Photocatalytic Rate at a Single-Metal-Atom-Oxide. Advanced Materials, 2019, 31, e1903491	24	29	
231	Catalyst-Free Synthesis of Few-Layer Graphdiyne Using a Microwave-Induced Temperature Gradient at a Solid/Liquid Interface. <i>Advanced Functional Materials</i> , 2020 , 30, 2001396	15.6	28	
230	Anomalous Hall effect and magnetic orderings in nanothick V5S8. <i>Physical Review B</i> , 2017 , 96,	3.3	28	
229	Product-Specific Active Site Motifs of Cu for Electrochemical CO2 Reduction. <i>CheM</i> , 2021 , 7, 406-420	16.2	27	
228	Sub-2 nm Ultrasmall High-Entropy Alloy Nanoparticles for Extremely Superior Electrocatalytic Hydrogen Evolution. <i>Journal of the American Chemical Society</i> , 2021 , 143, 17117-17127	16.4	27	
227	Scaling-up Atomically Thin Coplanar Semiconductor-Metal Circuitry via Phase Engineered Chemical Assembly. <i>Nano Letters</i> , 2019 , 19, 6845-6852	11.5	26	

		Pend	i Gao
226	Highly Flexible and Twistable Freestanding Single Crystalline Magnetite Film with Robust Magnetism. <i>Advanced Functional Materials</i> , 2020 , 30, 2003495	15.6	26
225	Evidence for electric-field-driven migration and diffusion of oxygen vacancies in Pr0.7Ca0.3MnO3. Journal of Applied Physics, 2012, 111, 114506	2.5	26
224	Core-Shell FeSe /C Nanostructures Embedded in a Carbon Framework as a Free Standing Anode for a Sodium Ion Battery. <i>Small</i> , 2020 , 16, e2002200	11	26
223	In situ visualization of sodium transport and conversion reactions of FeS2 nanotubes made by morphology engineering. <i>Nano Energy</i> , 2019 , 60, 424-431	17.1	25
222	High-Mobility Flexible Oxyselenide Thin-Film Transistors Prepared by a Solution-Assisted Method. <i>Journal of the American Chemical Society</i> , 2020 , 142, 2726-2731	16.4	25
221	Electrode engineering for improving resistive switching performance in single crystalline CeO2 thin films. <i>Solid-State Electronics</i> , 2012 , 72, 4-7	1.7	25
220	Defect-Laden MoSe Quantum Dots Made by Turbulent Shear Mixing as Enhanced Electrocatalysts. <i>Small</i> , 2017 , 13, 1700565	11	24
219	Giant Electroresistance in Ferroionic Tunnel Junctions. <i>IScience</i> , 2019 , 16, 368-377	6.1	24
218	Toroidal polar topology in strained ferroelectric polymer. <i>Science</i> , 2021 , 371, 1050-1056	33.3	24
217	Atomic imaging of mechanically induced topological transition of ferroelectric vortices. <i>Nature Communications</i> , 2020 , 11, 1840	17.4	24
216	General Decomposition Pathway of Organic-Inorganic Hybrid Perovskites through an Intermediate Superstructure and its Suppression Mechanism. <i>Advanced Materials</i> , 2020 , 32, e2001107	24	23
215	Flexible hybrid carbon nanotube sponges embedded with SnS2 from tubular nanosheaths to nanosheets as free-standing anodes for lithium-ion batteries. <i>RSC Advances</i> , 2016 , 6, 30098-30105	3.7	23
214	Atomic-scale observations of electrical and mechanical manipulation of topological polar flux closure. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 189	54-189	96 ²³
213	Subunit cell-level measurement of polarization in an individual polar vortex. <i>Science Advances</i> , 2019 , 5, eaav4355	14.3	23
212	Thickness-Dependent In-Plane Polarization and Structural Phase Transition in van der Waals Ferroelectric CuInP S. <i>Small</i> , 2020 , 16, e1904529	11	22
211	Surface and Near-Surface Engineering of PtCo Nanowires at Atomic Scale for Enhanced Electrochemical Sensing and Catalysis. <i>Chemistry of Materials</i> , 2018 , 30, 6660-6667	9.6	22
210	Universal Imaging of Full Strain Tensor in 2D Crystals with Third-Harmonic Generation. <i>Advanced Materials</i> , 2019 , 31, e1808160	24	21
209	Challenges, myths, and opportunities of electron microscopy on halide perovskites. <i>Journal of Applied Physics</i> . 2020 . 128. 010901	2.5	21

(2019-2020)

208	Robust ultraclean atomically thin membranes for atomic-resolution electron microscopy. <i>Nature Communications</i> , 2020 , 11, 541	17.4	21
207	Synthesis and structure of perovskite ScMnO3. <i>Inorganic Chemistry</i> , 2013 , 52, 9692-7	5.1	21
206	In Situ Oxygen Doping of Monolayer MoS for Novel Electronics. <i>Small</i> , 2020 , 16, e2004276	11	21
205	Stable interstitial layer to alleviate fatigue fracture of high nickel cathode for lithium-ion batteries. Journal of Power Sources, 2018 , 376, 200-206	8.9	21
204	Ultrafast Broadband Charge Collection from Clean Graphene/CHNHPbI Interface. <i>Journal of the American Chemical Society</i> , 2018 , 140, 14952-14957	16.4	21
203	Tracking sodium migration in TiS using in situ TEM. <i>Nanoscale</i> , 2019 , 11, 7474-7480	7.7	20
202	General Protocol for the Accurate Prediction of Molecular C/H NMR Chemical Shifts via Machine Learning Augmented DFT. <i>Journal of Chemical Information and Modeling</i> , 2020 , 60, 3746-3754	6.1	20
201	Thermolysis of Noble Metal Nanoparticles into Electron-Rich Phosphorus-Coordinated Noble Metal Single Atoms at Low Temperature. <i>Angewandte Chemie</i> , 2019 , 131, 14322-14326	3.6	20
200	Atomic-Scale Tracking of a Phase Transition from Spinel to Rocksalt in Lithium Manganese Oxide. <i>Chemistry of Materials</i> , 2017 , 29, 1006-1013	9.6	19
199	A 3-D binder-free nanoporous anode for a safe and stable charging of lithium ion batteries. <i>Materials Research Bulletin</i> , 2017 , 93, 1-8	5.1	19
198	Electrolyte-assisted dissolution-recrystallization mechanism towards high energy density and power density CF cathodes in potassium cell. <i>Nano Energy</i> , 2020 , 70, 104552	17.1	19
197	Broad-Spectral-Range Sustainability and Controllable Excitation of Hyperbolic Phonon Polaritons in B MoO. <i>Advanced Materials</i> , 2020 , 32, e2002014	24	19
196	Reaction Mechanism and Structural Evolution of Fluorographite Cathodes in Solid-State K/Na/Li Batteries. <i>Advanced Materials</i> , 2021 , 33, e2006118	24	19
195	Quasi-2D Growth of Aluminum Nitride Film on Graphene for Boosting Deep Ultraviolet Light-Emitting Diodes. <i>Advanced Science</i> , 2020 , 7, 2001272	13.6	18
194	Electroforming and endurance behavior of Al/Pr0.7Ca0.3MnO3/Pt devices. <i>Applied Physics Letters</i> , 2011 , 99, 113506	3.4	18
193	Transmission electron microscopy of organic-inorganic hybrid perovskites: myths and truths. <i>Science Bulletin</i> , 2020 , 65, 1643-1649	10.6	17
192	Conceptual Framework for Dislocation-Modified Conductivity in Oxide Ceramics Deconvoluting Mesoscopic Structure, Core, and Space Charge Exemplified for SrTiO. <i>ACS Nano</i> , 2021 , 15, 9355-9367	16.7	17
191	Single-Crystal FeO with Engineered Exposed (001) Facet for High-Rate, Long-Cycle-Life Lithium-Ion Battery Anode. <i>Inorganic Chemistry</i> , 2019 , 58, 12724-12732	5.1	16

190	Robust production of 2D quantum sheets from bulk layered materials. <i>Materials Horizons</i> , 2019 , 6, 1416	-14.4 4	16
189	Realization of Quantum Hall Effect in Chemically Synthesized InSe. <i>Advanced Functional Materials</i> , 2019 , 29, 1904032	15.6	16
188	Origin of the emergence of higher T than bulk in iron chalcogenide thin films. <i>Scientific Reports</i> , 2017 , 7, 9994	4.9	16
187	Metal Organic Framework-Derived Cobalt Dicarboxylate as a High-Capacity Anode Material for Lithium-ion Batteries. <i>Energy Technology</i> , 2017 , 5, 637-642	3.5	16
186	Zinc terephthalates ZnC8H4O4 as anodes for lithium ion batteries. <i>Electrochimica Acta</i> , 2017 , 235, 304-3	3607	15
185	Direct Growth of Nanopatterned Graphene on Sapphire and Its Application in Light Emitting Diodes. <i>Advanced Functional Materials</i> , 2020 , 30, 2001483	15.6	15
184	Low Threshold Fabry-Pfot Mode Lasing from Lead Iodide Trapezoidal Nanoplatelets. <i>Small</i> , 2018 , 14, e1801938	11	15
183	Space-confined growth of monolayer ReSe2 under a graphene layer on Au foils. <i>Nano Research</i> , 2019 , 12, 149-157	10	15
182	Visualizing grain boundaries in monolayer MoSe2 using mild H2O vapor etching. <i>Nano Research</i> , 2018 , 11, 4082-4089	10	14
181	Exploration of the Dehydrogenation Pathways of Ammonia Diborane and Diammoniate of Diborane by Molecular Dynamics Simulations Using Reactive Force Fields. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 1698-1704	2.8	14
180	Creating polar antivortex in PbTiO/SrTiO superlattice. <i>Nature Communications</i> , 2021 , 12, 2054	17.4	14
179	Palladium Single Atoms on TiO2 as a Photocatalytic Sensing Platform for Analyzing the Organophosphorus Pesticide Chlorpyrifos. <i>Angewandte Chemie</i> , 2020 , 132, 238-242	3.6	14
178	Schottky Barrier-Induced Surface Electric Field Boosts Universal Reduction of NO in Water to Ammonia. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20711-20716	16.4	14
177	Atomic mechanism of strong interactions at the graphene/sapphire interface. <i>Nature Communications</i> , 2019 , 10, 5013	17.4	13
176	Higher-order harmonic resonances and mechanical properties of individual cadmium sulphide nanowires measured by in situ transmission electron microscopy. <i>Journal of Electron Microscopy</i> , 2010 , 59, 285-9		13
175	Highly Conductive Nitrogen-Doped Vertically Oriented Graphene toward Versatile Electrode-Related Applications. <i>ACS Nano</i> , 2020 , 14, 15327-15335	16.7	13
174	Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots. <i>Nature Photonics</i> ,	33.9	13
173	Sub-Nanometer Pt Clusters on Defective NiFe LDH Nanosheets as Trifunctional Electrocatalysts for Water Splitting and Rechargeable Hybrid Sodium-Air Batteries. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 26891-26903	9.5	13

172	Van der Waals integration of high-фerovskite oxides and two-dimensional semiconductors. <i>Nature Electronics</i> , 2022 , 5, 233-240	28.4	13	
171	Strain-Inhibited Electromigration of Oxygen Vacancies in LaCoO. <i>ACS Applied Materials & Discours (Control of Control of </i>	9.5	12	
170	Atomic-level tunnel engineering of todorokite MnO2 for precise evaluation of lithium storage mechanisms by in situ transmission electron microscopy. <i>Nano Energy</i> , 2019 , 63, 103840	17.1	12	
169	Quantitative Analyses of the Interfacial Properties of Current Collectors at the Mesoscopic Level in Lithium Ion Batteries by Using Hierarchical Graphene. <i>Nano Letters</i> , 2020 , 20, 2175-2182	11.5	12	
168	Record thermopower found in an IrMn-based spintronic stack. <i>Nature Communications</i> , 2020 , 11, 2023	17.4	12	
167	Atomic-Precision Repair of a Few-Layer 2H-MoTe Thin Film by Phase Transition and Recrystallization Induced by a Heterophase Interface. <i>Advanced Materials</i> , 2020 , 32, e2000236	24	12	
166	Atomic-Scale Probing of Reversible Li Migration in 1T-VSe and the Interactions between Interstitial V and Li. <i>Nano Letters</i> , 2018 , 18, 6094-6099	11.5	12	
165	Identification of Copper Surface Index by Optical Contrast. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800)3 . 7.8	12	
164	Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer. <i>Science Advances</i> , 2021 , 7,	14.3	12	
163	Carbon Fibers Embedded With Iron Selenide (Fe Se) as Anode for High-Performance Sodium and Potassium Ion Batteries. <i>Frontiers in Chemistry</i> , 2020 , 8, 408	5	11	
162	Manipulation of surface phonon polaritons in SiC nanorods. Science Bulletin, 2020, 65, 820-826	10.6	11	
161	B NMR Chemical Shift Predictions via Density Functional Theory and Gauge-Including Atomic Orbital Approach: Applications to Structural Elucidations of Boron-Containing Molecules. <i>ACS</i> Omega, 2019 , 4, 12385-12392	3.9	11	
160	Two Birds with One Stone: Interfacial Engineering of Multifunctional Janus Separator for Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2021 , e2107638	24	11	
159	Accurate predictions of aqueous solubility of drug molecules via the multilevel graph convolutional network (MGCN) and SchNet architectures. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 23766-23772	3.6	11	
158	Computational exploration of magnesium-decorated carbon nitride (g-C3N4) monolayer as advanced energy storage materials. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 21739-21747	6.7	11	
157	Large-scale multiferroic complex oxide epitaxy with magnetically switched polarization enabled by solution processing. <i>National Science Review</i> , 2020 , 7, 84-91	10.8	11	
156	Bulk and surface degradation in layered Ni-rich cathode for Li ions batteries: Defect proliferation via chain reaction mechanism. <i>Energy Storage Materials</i> , 2021 , 35, 62-69	19.4	11	
155	Direct Growth of 5 in. Uniform Hexagonal Boron Nitride on Glass for High-Performance Deep-Ultraviolet Light-Emitting Diodes. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800662	4.6	11	

		Pena	i Gao
154	Study of damage generation induced by focused helium ion beam in silicon. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2019 , 37, 031804	1.3	10
153	In Situ Visualization of Interfacial Sodium Transport and Electrochemistry between Few-Layer Phosphorene. <i>Small Methods</i> , 2019 , 3, 1900061	12.8	10
152	Insight into the Structural Disorder in Honeycomb-Ordered Sodium-Layered Oxide Cathodes. <i>IScience</i> , 2020 , 23, 100898	6.1	10
151	Direct Growth of Continuous and Uniform MoS Film on SiO/Si Substrate Catalyzed by Sodium Sulfate. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1570-1577	6.4	10
150	In Situ Visualization of Structural Evolution and Fissure Breathing in (De)lithiated H2V3O8 Nanorods. <i>ACS Energy Letters</i> , 2019 , 4, 2081-2090	20.1	10
149	Tuning properties of columnar nanocomposite oxides. <i>Applied Physics Letters</i> , 2013 , 103, 043112	3.4	10
148	Ultrathin RuRh@(RuRh)O2 core@shell nanosheets as stable oxygen evolution electrocatalysts. Journal of Materials Chemistry A, 2020 , 8, 15746-15751	13	10
147	Electric Current Aligning Component Units during Graphene Fiber Joule Heating. <i>Advanced Functional Materials</i> ,2103493	15.6	10
146	A Highly Strained Phase in PbZrTiO Films with Enhanced Ferroelectric Properties. <i>Advanced Science</i> , 2021 , 8, 2003582	13.6	10
145	Atomic-scale imaging of CHNHPbI structure and its decomposition pathway. <i>Nature Communications</i> , 2021 , 12, 5516	17.4	10
144	A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by in situ transmission electron microscopy. <i>Energy and Environmental Science</i> , 2021 , 14, 2670-2707	35.4	10
143	Bending Strain-Tailored Magnetic and Electronic Transport Properties of Reactively Sputtered QFeN/Muscovite Epitaxial Heterostructures toward Flexible Spintronics. <i>ACS Applied Materials</i> & Interfaces, 2020 , 12, 27394-27404	9.5	9
142	Unraveling Atomically Irreversible Cation Migration in Sodium Layered Oxide Cathodes. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 5464-5470	6.4	9
141	Atomic-Scale insight into the reversibility of polar order in ultrathin epitaxial Nb:SrTiO3/BaTiO3 heterostructure and its implication to resistive switching. <i>Acta Materialia</i> , 2020 , 188, 23-29	8.4	9
140	Probing Far-Infrared Surface Phonon Polaritons in Semiconductor Nanostructures at Nanoscale. <i>Nano Letters</i> , 2019 , 19, 5070-5076	11.5	9
139	Intrinsic Wettability in Pristine Graphene. <i>Advanced Materials</i> , 2021 , e2103620	24	9
138	Selective doping to relax glassified grain boundaries substantially enhances the ionic conductivity of LiTi2(PO4)3 glass-ceramic electrolytes. <i>Journal of Power Sources</i> , 2020 , 449, 227574	8.9	9

Microscopic Kinetics Pathway of Salt Crystallization in Graphene Nanocapillaries. *Physical Review Letters*, **2021**, 126, 136001

7.4 9

(2020-2021)

136	Anisotropic moir optical transitions in twisted monolayer/bilayer phosphorene heterostructures. <i>Nature Communications</i> , 2021 , 12, 3947	17.4	9
135	Phase field simulation of charged interface formation during ferroelectric switching. <i>Acta Materialia</i> , 2016 , 112, 285-294	8.4	9
134	Direct observation of weakened interface clamping effect enabled ferroelastic domain switching. <i>Acta Materialia</i> , 2019 , 171, 184-189	8.4	8
133	Atomic origin of spin-valve magnetoresistance at the SrRuO grain boundary. <i>National Science Review</i> , 2020 , 7, 755-762	10.8	8
132	Oxygen Reduction Reaction Catalyzed by Carbon-Supported Platinum Few-Atom Clusters: Significant Enhancement by Doping of Atomic Cobalt. <i>Research</i> , 2020 , 2020, 9167829	7.8	8
131	Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials. <i>Nature Communications</i> , 2021 , 12, 5886	17.4	8
130	Ferroelectric Problem beyond the Conventional Scaling Law. <i>Physical Review Letters</i> , 2018 , 121, 135702	7.4	8
129	Elucidating the Roles of Hole Transport Layers in p-i-n Perovskite Solar Cells. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000149	6.4	7
128	Interfacial modulation of spin pumping in YIG/Pt. Physical Review B, 2020, 102,	3.3	7
127	Misalignment Induced Artifacts in Quantitative Annular Bright-Field Imaging. <i>Microscopy and Microanalysis</i> , 2016 , 22, 888-889	0.5	7
126	Eightfold fermionic excitation in a charge density wave compound. <i>Physical Review B</i> , 2020 , 102,	3.3	7
125	Understanding the Dehydrogenation Pathways of Ammonium Octahydrotriborate (NH4B3H8) by Molecular Dynamics Simulations with the Reactive Force Field (ReaxFF). <i>Advanced Theory and Simulations</i> , 2020 , 3, 2000139	3.5	7
124	Graphene-Nanorod Enhanced Quasi-Van Der Waals Epitaxy for High Indium Composition Nitride Films. <i>Small</i> , 2021 , 17, e2100098	11	7
123	Three dimensional band-filling control of complex oxides triggered by interfacial electron transfer. <i>Nature Communications</i> , 2021 , 12, 2447	17.4	7
122	Towards an Accurate Prediction of Nitrogen Chemical Shifts by Density Functional Theory and Gauge-Including Atomic Orbital. <i>Advanced Theory and Simulations</i> , 2019 , 2, 1800148	3.5	7
121	Schottky Barrier-Induced Surface Electric Field Boosts Universal Reduction of NOxlin Water to Ammonia. <i>Angewandte Chemie</i> , 2021 , 133, 20879-20884	3.6	7
120	Growth of 12-inch uniform monolayer graphene film on molten glass and its application in PbI2-based photodetector. <i>Nano Research</i> , 2019 , 12, 1888-1893	10	6
119	Antiferromagnetic Magnetic Polaron Formation and Optical Properties of CVD-Grown Mn-Doped Zinc Stannate (ZTO). <i>ACS Applied Electronic Materials</i> , 2020 , 2, 1679-1688	4	6

in situ transmission electron microscopy. Nano Energy, 2020, 77, 105299

Atomic-Scale Control of Electronic Structure and Ferromagnetic Insulating State in Perovskite Oxide Superlattices by Long-Range Tuning of BO6 Octahedra. *Advanced Functional Materials*, **2020**,

17.1

5

30, 2001984

102

(2020-2020)

100	Large-Scale Vertical 1T?/2H MoTe2 Nanosheet-Based Heterostructures for Low Contact Resistance Transistors. <i>ACS Applied Nano Materials</i> , 2020 , 3, 10411-10417	5.6	5
99	Relaxation and transfer of photoexcited electrons at a coplanar few-layer 1 T?/2H-MoTe2 heterojunction. <i>Communications Materials</i> , 2020 , 1,	6	5
98	Upgrading Electrode/Electrolyte Interphases via Polyamide-Based Quasi-Solid Electrolyte for Long-Life Nickel-Rich Lithium Metal Batteries. <i>ACS Energy Letters</i> ,1280-1289	20.1	5
97	Zone-Folded Longitudinal Acoustic Phonons Driving Self-Trapped State Emission in Colloidal CdSe Nanoplatelet Superlattices. <i>Nano Letters</i> , 2021 , 21, 4137-4144	11.5	5
96	Modification of the Interlayer Coupling and Chemical Reactivity of Multilayer Graphene through Wrinkle Engineering. <i>Chemistry of Materials</i> , 2021 , 33, 2506-2515	9.6	5
95	Computational evaluation of superalkali-decorated graphene nanoribbon as advanced hydrogen storage materials. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 24510-24516	6.7	5
94	Heterojunction-Based Electron Donators to Stabilize and Activate Ultrafine Pt Nanoparticles for Efficient Hydrogen Atom Dissociation and Gas Evolution. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25766-25770	16.4	5
93	A Generic Sacrificial Layer for Wide-Range Freestanding Oxides with Modulated Magnetic Anisotropy. <i>Advanced Functional Materials</i> ,2111907	15.6	5
92	Low-temperature epitaxy of transferable high-quality Pd(111) films on hybrid graphene/Cu(111) substrate. <i>Nano Research</i> , 2019 , 12, 2712-2717	10	4
91	Engineering of atomic-scale flexoelectricity at grain boundaries <i>Nature Communications</i> , 2022 , 13, 216	17.4	4
90	First Atomic-Scale Insight into Degradation in Lithium Iron Phosphate Cathodes by Transmission Electron Microscopy. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 4608-4617	6.4	4
89	Adhesion-Enhanced Vertically Oriented Graphene on Titanium-Covered Quartz Glass toward High-Stability Light-Dimming-Related Applications. <i>ACS Nano</i> , 2021 , 15, 10514-10524	16.7	4
88	Two-Dimensional BiSrCaCuO Nanosheets for Ultrafast Photonics and Optoelectronics. <i>ACS Nano</i> , 2021 , 15, 8919-8929	16.7	4
87	Superelastic oxide micropillars enabled by surface tension-modulated 90° domain switching with excellent fatigue resistance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	4
86	Engineering polar vortex from topologically trivial domain architecture. <i>Nature Communications</i> , 2021 , 12, 4620	17.4	4
85	Synthesis and Characterization of CuZnSe2 Nanocrystals in Wurtzite, Zinc Blende, and CoreBhell Polytypes. <i>Chemistry of Materials</i> , 2019 , 31, 10085-10093	9.6	4
84	Understanding the Intra-Molecular Proton Transfer of Octahydrotriborate and Exploring the Dehydrogenation Pathways of NH4B3H8 by DFT Calculations. <i>Advanced Theory and Simulations</i> , 2021 , 4, 2000287	3.5	4
83	Local modulation of excitons and trions in monolayer WS2 by carbon nanotubes. <i>Nano Research</i> , 2020 , 13, 1982-1987	10	3

		PENG	GAO
82	Spin-induced magnetic anisotropy in novel Co-doped GaN nanoneedles and their related photoluminescence. <i>New Journal of Chemistry</i> , 2018 , 42, 8338-8341	3.6	3
81	Substitutionally Doped MoSe for High-Performance Electronics and Optoelectronics. <i>Small</i> , 2021 , 17, e2102855	11	3
80	Intercalation of van der Waals layered materials: A route towards engineering of electron correlation. <i>Chinese Physics B</i> , 2020 , 29, 097104	1.2	3
79	Electronic-structure tuning of honeycomb layered oxide cathodes for superior performance. <i>Acta Materialia</i> , 2020 , 199, 34-41	8.4	3
78	Unraveling atomic-scale lithiation mechanisms in a NiO thin film electrode. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 25198-25207	13	3
77	Direct Observation of Li Migration into VS: Order to Antisite Disorder Intercalation Followed by the Topotactic-Based Conversion Reaction. <i>ACS Applied Materials & Disorder Interfaces</i> , 2020 , 12, 36320-36328	9.5	3
76	Development of in situ optical spectroscopy with high temporal resolution in an aberration-corrected transmission electron microscope. <i>Review of Scientific Instruments</i> , 2021 , 92, 0137	0 ¹ 4 ⁷	3
75	Grouping Effect of Single Nickel N4 Sites in Nitrogen-Doped Carbon Boosts Hydrogen Transfer Coupling of Alcohols and Amines. <i>Angewandte Chemie</i> , 2018 , 130, 15414-15418	3.6	3
74	Atomic-scale structure and chemistry of YIG/GGG. AIP Advances, 2018, 8, 085117	1.5	3
73	Atomic-scale mechanism of internal structural relaxation screening at polar interfaces. <i>Physical Review B</i> , 2018 , 97,	3.3	3
72	Computational evaluation of Mg-decorated g-CN as clean energy gas storage media. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 35130-35136	6.7	3
71	Graphene-driving strain engineering to enable strain-free epitaxy of AlN film for deep ultraviolet light-emitting diode <i>Light: Science and Applications</i> , 2022 , 11, 88	16.7	3
70	Effect of single point defect on local properties in BiFeO3 thin film. <i>Acta Materialia</i> , 2019 , 170, 132-137	8.4	2
69	Probing Lattice Vibrations at SiO 2 /Si Surface and Interface with Nanometer Resolution. <i>Chinese Physics Letters</i> , 2019 , 36, 026801	1.8	2
68	Image Restoration via Deep Memory-Based Latent Attention Network. <i>IEEE Access</i> , 2020 , 8, 104728-104	1339	2
67	Metal-Based Nanocatalysts: Metal-Based Nanocatalysts via a Universal Design on Cellular Structure (Adv. Sci. 3/2020). <i>Advanced Science</i> , 2020 , 7, 2070013	13.6	2
66	Atomic-Scale Mechanism of Spontaneous Polarity Inversion in AlN on Nonpolar Sapphire Substrate	11	2

17.4 2

Grown by MOCVD.. Small, 2022, e2200057

Communications, **2021**, 12, 7258

Long decay length of magnon-polarons in BiFeO/LaSrMnO heterostructures.. $\it Nature$

64	Transfer-Enabled Fabrication of Graphene Wrinkle Arrays for Epitaxial Growth of AlN Films. <i>Advanced Materials</i> , 2021 , e2105851	24	2
63	Enhancement of Interfacial Polarization in BaTiO3 Thin Films via Oxygen Inhomogeneity. <i>Advanced Electronic Materials</i> ,2100876	6.4	2
62	Stabilization of ferroelastic charged domain walls in self-assembled BiFeO3 nanoislands. <i>Journal of Applied Physics</i> , 2020 , 128, 124103	2.5	2
61	Giant pattern evolution in third-harmonic generation of strained monolayer WS2 at two-photon excitonic resonance. <i>Nano Research</i> , 2020 , 13, 3235-3240	10	2
60	Engineering of multiferroic BiFeO3 grain boundaries with head-to-head polarization configurations. <i>Science Bulletin</i> , 2021 , 66, 771-776	10.6	2
59	Lattice-resolution visualization of anisotropic sodiation degrees and revelation of sodium storage mechanisms in todorokite-type MnO2 with in-situ TEM. <i>Energy Storage Materials</i> , 2021 , 37, 345-353	19.4	2
58	Tunable Pore Size from Sub-Nanometer to a Few Nanometers in Large-Area Graphene Nanoporous Atomically Thin Membranes. <i>ACS Applied Materials & Description of the Communication o</i>	9.5	2
57	Two-Dimensional Room-Temperature Giant Antiferrodistortive SrTiO_{3} at a Grain Boundary. <i>Physical Review Letters</i> , 2021 , 126, 225702	7.4	2
56	Flexible Electronics: Novel Pliable Electrodes for Flexible Electrochemical Energy Storage Devices: Recent Progress and Challenges (Adv. Energy Mater. 17/2016). <i>Advanced Energy Materials</i> , 2016 , 6,	21.8	2
55	Atomic origin of Ti-deficient dislocation in SrTiO3 bicrystals and their electronic structures. <i>Journal of Applied Physics</i> , 2019 , 126, 174106	2.5	2
54	A systematic benchmarking of 31P and 19F NMR chemical shift predictions using different DFT/GIAO methods and applying linear regression to improve the prediction accuracy. <i>International Journal of Quantum Chemistry</i> , 2021 , 121, e26482	2.1	2
53	Dislocation-induced large local polarization inhomogeneity of ferroelectric materials. <i>Scripta Materialia</i> , 2021 , 194, 113624	5.6	2
52	Nanosized Cu-Li glass. <i>Science Bulletin</i> , 2018 , 63, 1173-1174	10.6	2
51	Atomically Thin Bilayer Janus Membranes for Cryo-electron Microscopy. ACS Nano, 2021, 15, 16562-165	57t6. ₇	2
50	Accurate predictions of drugs aqueous solubility via deep learning tools. <i>Journal of Molecular Structure</i> , 2021 , 1249, 131562	3.4	2
49	Atomic-Scale Mechanism of Grain Boundary Effects on the Magnetic and Transport Properties of FeO Bicrystal Films. <i>ACS Applied Materials & Endows (Section 2021)</i> , 13, 6889-6896	9.5	2
48	Regulating Crystal Facets of MnO2 for Enhancing Peroxymonosulfate Activation to Degrade Pollutants: Performance and Mechanism. <i>Catalysts</i> , 2022 , 12, 342	4	2
47	Vertical Graphene-Reinforced Titanium Alloy Bipolar Plates in Fuel Cells Advanced Materials, 2022 , e2	11:04565	2

Role of oxygen vacancies in colossal polarization in SmFeO thin films.. Science Advances, 2022, 8, eabm85503. 46 Large-scale Hf Zr O Membranes with Robust Ferroelectricity.. Advanced Materials, 2022, e2109889 45 24 2 Automatic classification of rural building characteristics using deep learning methods on oblique 3.9 2 44 photography. Building Simulation, 2022, 15, 1161-1174 Green CdSe/CdSeS Core/Alloyed-Crown Nanoplatelets Achieve Unity Photoluminescence Quantum 8.1 43 Yield over a Broad Emission Range. Advanced Optical Materials, 2200469 Atomic scale insight into the fundamental mechanism of Mn doped LiFePO4. Sustainable Energy 5.8 42 1 and Fuels, 2020, 4, 2741-2751 Peeling off Nanometer-Thick Ferromagnetic Layers and Their van der Waals Heterostructures. 6.4 41 Advanced Electronic Materials, 2019, 5, 1900345 UV Light-Emitting Diodes: Enhancement of Heat Dissipation in Ultraviolet Light-Emitting Diodes by a Vertically Oriented Graphene Nanowall Buffer Layer (Adv. Mater. 29/2019). Advanced Materials, 40 1 24 2019, 31, 1970211 Discovering a Novel Sodiation in FeF2 Electrodes for Sodium-Ion Batteries. Microscopy and 39 0.5 Microanalysis, 2014, 20, 490-491 Photo-enhanced field electron emission of cadmium sulfide nanowires. Science China: Physics, 38 3.6 1 Mechanics and Astronomy, 2011, 54, 1963-1966 Electrically driven motion, destruction, and chirality change of polar vortices in oxide superlattices. 3.6 37 1 Science China: Physics, Mechanics and Astronomy, 2022, 65, 1 Ultraviolet/Visible Quasicylindrical Waves on Semimetal Cd3As2 Nanoplates. Advanced Photonics 36 1.9 1 Research,2100354 Computational Evaluation of Li-doped g-C2N Monolayer as Advanced Hydrogen Storage Media. 6.7 35 International Journal of Hydrogen Energy, 2022, 47, 3625-3632 Interface ferromagnetism and anomalous Hall effect of CdO/ferromagnetic-insulator 34 3.2 1 heterostructures. Physical Review Materials, 2019, 3, Graphene-Assisted Quasi-van der Waals Epitaxy of AlN Film on Nano-Patterned Sapphire Substrate 1.6 33 for Ultraviolet Light Emitting Diodes. Journal of Visualized Experiments, 2020, 32 Nanopatterned Graphene: Direct Growth of Nanopatterned Graphene on Sapphire and Its Application in Light Emitting Diodes (Adv. Funct. Mater. 31/2020). Advanced Functional Materials, 15.6 31 2020, 30, 2070209 Precursor-Mediated Linear- and Branched-Polytypism Control in Cu∄nBnBelColloidal 30 9.6 1 Nanocrystals Using a Dual-Injection Method. Chemistry of Materials, 2020, 32, 7254-7262 Prototype Design of a Domain-Wall-Based Magnetic Memory Using a Single Layer LaSrMnO Thin 29 9.5 Film. ACS Applied Materials & Therfaces, 2021, 13, 23945-23950

28	Correlating the electronic structures of metallic/semiconducting MoTe interface to its atomic structures. <i>National Science Review</i> , 2021 , 8, nwaa087	10.8	1
27	In situ TEM revealing the effects of dislocations on lithium-ion migration in transition metal dichalcogenides. <i>Journal of Energy Chemistry</i> , 2021 , 58, 280-284	12	1
26	A general QSPR protocol for the prediction of atomic/inter-atomic properties: a fragment based graph convolutional neural network (F-GCN). <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 13242-1324	9 ^{3.6}	1
25	Heterojunction-based electron donators to stabilize and activate ultrafine Pt nanoparticles for efficient hydrogen atom dissociation and gas evolution. <i>Angewandte Chemie</i> ,	3.6	1
24	Improving Performance of Bifacial-Grid III V Solar Cells Bonded on Glass by Selective Contact Annealing. <i>Solar Rrl</i> ,2100438	7.1	1
23	Synthesis of centimeter-scale high-quality polycrystalline hexagonal boron nitride films from Fe fluxes. <i>Nanoscale</i> , 2021 , 13, 11223-11231	7.7	1
22	Switching magnon chirality in artificial ferrimagnet <i>Nature Communications</i> , 2022 , 13, 1264	17.4	1
21	Role of binary metal chalcogenides in extending the limits of energy storage systems: Challenges and possible solutions. <i>Science China Materials</i> , 2022 , 65, 559-592	7.1	1
20	Atomic structure and electrical/ionic activity of antiphase boundary in CH3NH3PbI3. <i>Acta Materialia</i> , 2022 , 234, 118010	8.4	1
19	Intrinsic Wettability in Pristine Graphene (Adv. Mater. 6/2022). Advanced Materials, 2022, 34, 2270050	24	Ο
18	The role of Cu crystallographic orientations towards growing superclean graphene on meter-sized scale. <i>Nano Research</i> ,1	10	0
17	Microscopic physical origin of polarization induced large tunneling electroresistance in tetragonal-phase BiFeO3. <i>Acta Materialia</i> , 2022 , 225, 117564	8.4	O
16	Similarities and Differences in Kinetics and Dynamics During Li and Na Transport in MoS 2 Nanostructures. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1386-1387	0.5	0
15	Modeling and simulation of high-efficiency GaAs PIN solar cells. <i>Journal of Computational Electronics</i> , 2021 , 20, 310-316	1.8	O
14	Flexoelectric Domain Walls Originated from Structural Phase Transition in Epitaxial BiVO Films <i>Small</i> , 2022 , e2107540	11	O
13	Accelerating the Activation of NO x lbn Ru Nanoparticles for Ammonia Production by Tuning Their Electron Deficiency. <i>CCS Chemistry</i> ,1-8	7.2	O
12	Studying plasmon dispersion of MXene for enhanced electromagnetic absorption <i>Advanced Materials</i> , 2022 , e2201120	24	О
11	Tracking Displacement Reactions in CuxV2O5 Cathodes by in-situ TEM. <i>Microscopy and Microanalysis</i> , 2014 , 20, 450-451	0.5	

10	Better Contrast for Imaging Defects by ABF. Microscopy and Microanalysis, 2017, 23, 480-481	0.5
9	Asymmetric Phase Transition Pathways During Li/Na Migration in 2D Materials. <i>Microscopy and Microanalysis</i> , 2017 , 23, 2070-2071	0.5
8	Atomic Observation of Phase Transformation from Spinel to Rock Salt in Lithium Manganese Oxide. <i>Microscopy and Microanalysis</i> , 2015 , 21, 333-334	0.5
7	Annular Bright-Field Electron Microscopy Tracking Solid-State Chemical Reaction. <i>Microscopy and Microanalysis</i> , 2015 , 21, 963-964	0.5
6	Tracking Ionic Transport and Electrochemical Dynamics in Battery Electrodes Using in situ TEM-EELS. <i>Microscopy and Microanalysis</i> , 2015 , 21, 803-804	0.5
5	B11-O-11Atomic-scale Tracking Cation Diffusion in Lithium Manganese Oxide. <i>Microscopy (Oxford, England)</i> , 2015 , 64, i15.2-i15	1.3
4	Electrical, Optical and Ionic Probe inside Transmission Electron Microscope. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1525, 1	
3	Atomic-environment-dependent thickness of ferroelastic domain walls near dislocations. <i>Acta Materialia</i> , 2020 , 188, 635-640	8.4
2	Hyperbolic Phonon Polaritons: Broad-Spectral-Range Sustainability and Controllable Excitation of Hyperbolic Phonon Polaritons in \(\text{HoO3} \) (Adv. Mater. 46/2020). Advanced Materials, 2020 , 32, 2070347	24
1	Inside Back Cover: Wafer-Scale Oxygen-Doped MoS2 Monolayer (Small Methods 6/2021). <i>Small Methods</i> , 2021 , 5, 2170026	12.8