
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2330597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heat shock proteins and the immune response. Trends in Immunology, 1990, 11, 129-136.	7.5	933
2	IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature, 2014, 507, 366-370.	27.8	882
3	Iron and microbial infection. Nature Reviews Microbiology, 2004, 2, 946-953.	28.6	835
4	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
5	A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet, The, 2016, 387, 2312-2322.	13.7	678
6	Malnutrition and Infection: Complex Mechanisms and Global Impacts. PLoS Medicine, 2007, 4, e115.	8.4	655
7	How can immunology contribute to the control of tuberculosis?. Nature Reviews Immunology, 2001, 1, 20-30.	22.7	612
8	<i>Mycobacterium tuberculosis</i> : success through dormancy. FEMS Microbiology Reviews, 2012, 36, 514-532.	8.6	571
9	Host-directed therapies for bacterial and viral infections. Nature Reviews Drug Discovery, 2018, 17, 35-56.	46.4	512
10	Cutting Edge: Regulatory T Cells Prevent Efficient Clearance of <i>Mycobacterium tuberculosis</i> . Journal of Immunology, 2007, 178, 2661-2665.	0.8	505
11	Role of Heat Shock Proteins in Protection from and Pathogenesis of Infectious Diseases. Clinical Microbiology Reviews, 1999, 12, 19-39.	13.6	496
12	Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. Journal of Clinical Investigation, 2005, 115, 2472-2479.	8.2	490
13	Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nature Medicine, 2003, 9, 1039-1046.	30.7	475
14	Different roles of αβ and γδT cells in immunity against an intracellular bacterial pathogen. Nature, 1993, 365, 53-56.	27.8	419
15	The Mycobacterium tuberculosis regulatory network and hypoxia. Nature, 2013, 499, 178-183.	27.8	416
16	Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature, 2018, 563, 131-136.	27.8	412
17	Vaccines against Tuberculosis: Where Are We and Where Do We Need to Go?. PLoS Pathogens, 2012, 8, e1002607.	4.7	381
18	New insights into the function of granulomas in human tuberculosis. Journal of Pathology, 2006, 208, 261-269.	4.5	362

#	Article	IF	CITATIONS
19	Ito Cells Are Liver-Resident Antigen-Presenting Cells for Activating T Cell Responses. Immunity, 2007, 26, 117-129.	14.3	362
20	Apoptotic Vesicles Crossprime CD8 T Cells and Protect against Tuberculosis. Immunity, 2006, 24, 105-117.	14.3	353
21	CD8+ T lymphocytes in intracellular microbial infections. Trends in Immunology, 1988, 9, 168-174.	7.5	348
22	Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10685-10690.	7.1	348
23	AhR sensing of bacterial pigments regulates antibacterial defence. Nature, 2014, 512, 387-392.	27.8	309
24	Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7853-7858.	7.1	306
25	Scaling up interventions to achieve global tuberculosis control: progress and new developments. Lancet, The, 2012, 379, 1902-1913.	13.7	300
26	Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. Journal of Pathology, 2004, 204, 217-228.	4.5	289
27	MIP-1Â, MIP-1Â, RANTES, and ATAC/lymphotactin function together with IFN-Â as type 1 cytokines. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6181-6186.	7.1	275
28	Primary responses of human T cells to mycobacteria: a frequent set of γ/δT cells are stimulated by protease-resistant ligands. European Journal of Immunology, 1990, 20, 1175-1179.	2.9	272
29	Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infectious Diseases, The, 2016, 16, e47-e63.	9.1	265
30	Signaling via the MyD88 Adaptor Protein in B Cells Suppresses Protective Immunity during Salmonella typhimurium Infection. Immunity, 2010, 33, 777-790.	14.3	263
31	Protection of mice against the intracellular bacteriumListeria monocytogenes by recombinant immune interferon. European Journal of Immunology, 1984, 14, 964-967.	2.9	259
32	New vaccines for tuberculosis. Lancet, The, 2010, 375, 2110-2119.	13.7	255
33	Immune response to infection with <i>Salmonella typhimurium</i> in mice. Journal of Leukocyte Biology, 2000, 67, 457-463.	3.3	254
34	Poor correlation between BCG vaccination-induced T cell responses and protection against tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12434-12439.	7.1	253
35	MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. Journal of Clinical Investigation, 2013, 123, 4836-4848.	8.2	245
36	Enumeration of T cells reactive with <i>Mycobacterium tuberculosis</i> organisms and specific for the recombinant mycobacterial 64â€kDa protein. European Journal of Immunology, 1987, 17, 351-357.	2.9	244

#	Article	IF	CITATIONS
37	Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes. Nature Biotechnology, 1998, 16, 181-185.	17.5	238
38	Unique Transcriptome Signature of Mycobacterium tuberculosis in Pulmonary Tuberculosis. Infection and Immunity, 2006, 74, 1233-1242.	2.2	234
39	Protective role of γ/δT cells and α/β T cells in tuberculosis. European Journal of Immunology, 1995, 25, 2877-2881.	2.9	231
40	Immunology's foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nature Immunology, 2008, 9, 705-712.	14.5	230
41	Immune response toMycobacterium bovis bacille Calmette Guérin infection in major histocompatibility complex class I- and II-deficient knock-out mice: contribution of CD4 and CD8 T cells to acquired resistance. European Journal of Immunology, 1995, 25, 377-384.	2.9	229
42	Annulling a dangerous liaison: vaccination strategies against AIDS and tuberculosis. Nature Medicine, 2005, 11, S33-S44.	30.7	229
43	Absolute Proteome Composition and Dynamics during Dormancy and Resuscitation of Mycobacterium tuberculosis. Cell Host and Microbe, 2015, 18, 96-108.	11.0	229
44	Four-Gene Pan-African Blood Signature Predicts Progression to Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1198-1208.	5.6	217
45	Early granuloma formation after aerosol <i>Mycobacterium tuberculosis</i> infection is regulated by neutrophils via CXCR3â€signaling chemokines. European Journal of Immunology, 2003, 33, 2676-2686.	2.9	212
46	Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis. Journal of Molecular Medicine, 2007, 85, 613-621.	3.9	211
47	Notch signaling is activated by TLR stimulation and regulates macrophage functions. European Journal of Immunology, 2008, 38, 174-183.	2.9	207
48	Mucosal BCG Vaccination Induces Protective Lung-Resident Memory T Cell Populations against Tuberculosis. MBio, 2016, 7, .	4.1	205
49	Correction of the Iron Overload Defect in β-2-Microglobulin Knockout Mice by Lactoferrin Abolishes Their Increased Susceptibility to Tuberculosis. Journal of Experimental Medicine, 2002, 196, 1507-1513.	8.5	204
50	Is the development of a new tuberculosis vaccine possible?. Nature Medicine, 2000, 6, 955-960.	30.7	202
51	Mycobacteria-reactive Lyt-2+ T cell lines. European Journal of Immunology, 1988, 18, 59-66.	2.9	195
52	Biomarkers of Inflammation, Immunosuppression and Stress Are Revealed by Metabolomic Profiling of Tuberculosis Patients. PLoS ONE, 2012, 7, e40221.	2.5	195
53	Progress in tuberculosis vaccine development and host-directed therapies—a state of the art review. Lancet Respiratory Medicine,the, 2014, 2, 301-320.	10.7	195
54	The adaptor molecule CARD9 is essential for tuberculosis control. Journal of Experimental Medicine, 2010, 207, 777-792.	8.5	193

#	Article	IF	CITATIONS
55	Type I IFN signaling triggers immunopathology in tuberculosisâ€susceptible mice by modulating lung phagocyte dynamics. European Journal of Immunology, 2014, 44, 2380-2393.	2.9	190
56	Molecular Determinants in Phagocyte-Bacteria Interactions. Immunity, 2016, 44, 476-491.	14.3	190
57	LAG-3 Inhibitory Receptor Expression Identifies Immunosuppressive Natural Regulatory Plasma Cells. Immunity, 2018, 49, 120-133.e9.	14.3	190
58	Regulatory CD4+CD25+ T Cells Restrict Memory CD8+ T Cell Responses. Journal of Experimental Medicine, 2002, 196, 1585-1592.	8.5	189
59	CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. Journal of Clinical Investigation, 2014, 124, 1268-1282.	8.2	183
60	The human immune response to tuberculosis and its treatment: a view from the blood. Immunological Reviews, 2015, 264, 88-102.	6.0	168
61	Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine, 2013, 31, 1340-1348.	3.8	166
62	The Mtb Proteome Library: A Resource of Assays to Quantify the Complete Proteome of Mycobacterium tuberculosis. Cell Host and Microbe, 2013, 13, 602-612.	11.0	165
63	Differential T cell responses toMycobacterium tuberculosis ESAT6 in tuberculosis patients and healthy donors. European Journal of Immunology, 1998, 28, 3949-3958.	2.9	164
64	Mutation in the Transcriptional Regulator PhoP Contributes to Avirulence of Mycobacterium tuberculosis H37Ra Strain. Cell Host and Microbe, 2008, 3, 97-103.	11.0	163
65	Confrontation between Intracellular Bacteria and the Immune System. Advances in Immunology, 1998, 71, 267-377.	2.2	162
66	Functional Correlations of Pathogenesis-Driven Gene Expression Signatures in Tuberculosis. PLoS ONE, 2011, 6, e26938.	2.5	162
67	Alternative activation deprives macrophages of a coordinated defense program toMycobacterium tuberculosis. European Journal of Immunology, 2006, 36, 631-647.	2.9	161
68	Complementary Analysis of the Mycobacterium tuberculosis Proteome by Two-dimensional Electrophoresis and Isotope-coded Affinity Tag Technology. Molecular and Cellular Proteomics, 2004, 3, 24-42.	3.8	160
69	Saposin C is required for lipid presentation by human CD1b. Nature Immunology, 2004, 5, 169-174.	14.5	160
70	Comparative proteome analysis of culture supernatant proteins from virulent <i>Mycobacterium tuberculosis</i> H37Rv and attenuated <i>M. bovis</i> BCG Copenhagen. Electrophoresis, 2003, 24, 3405-3420.	2.4	156
71	Cellâ€Wall Alterations as an Attribute ofMycobacterium tuberculosisin Latent Infection. Journal of Infectious Diseases, 2003, 188, 1326-1331.	4.0	156
72	T-Cell Responses to CD1-Presented Lipid Antigens in Humans with Mycobacterium tuberculosis Infection. Infection and Immunity, 2003, 71, 3076-3087.	2.2	155

#	Article	IF	CITATIONS
73	Evaluation of vaccines in the EU TB Vaccine Cluster using a guinea pig aerosol infection model of tuberculosis. Tuberculosis, 2005, 85, 29-38.	1.9	154
74	Future Vaccination Strategies against Tuberculosis: Thinking outside the Box. Immunity, 2010, 33, 567-577.	14.3	154
75	Safety and Immunogenicity of an Intramuscular Helicobacter pylori Vaccine in Noninfected Volunteers: A Phase I Study. Gastroenterology, 2008, 135, 787-795.	1.3	152
76	Targeting the proteasome: partial inhibition of the proteasome by bortezomib or deletion of the immunosubunit LMP7 attenuates experimental colitis. Gut, 2010, 59, 896-906.	12.1	150
77	Activation of the NLRP3 inflammasome by <i>Mycobacterium tuberculosis</i> is uncoupled from susceptibility to active tuberculosis. European Journal of Immunology, 2012, 42, 374-384.	2.9	150
78	Immunogenicity of Novel DosR Regulon-Encoded Candidate Antigens of <i>Mycobacterium tuberculosis</i> in Three High-Burden Populations in Africa. Vaccine Journal, 2009, 16, 1203-1212.	3.1	148
79	Proteasome-mediated degradation of lκBα and processing of p105 in Crohn disease and ulcerative colitis. Journal of Clinical Investigation, 2006, 116, 3195-3203.	8.2	146
80	Cutting Edge: Role of B Lymphocytes in Protective Immunity Against <i>Salmonella typhimurium</i> Infection. Journal of Immunology, 2000, 164, 1648-1652.	0.8	145
81	The contribution of immunology to the rational design of novel antibacterial vaccines. Nature Reviews Microbiology, 2007, 5, 491-504.	28.6	144
82	For better or for worse: the immune response against <i>Mycobacterium tuberculosis</i> balances pathology and protection. Immunological Reviews, 2011, 240, 235-251.	6.0	144
83	Lung-Residing Myeloid-derived Suppressors Display Dual Functionality in Murine Pulmonary Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1053-1066.	5.6	143
84	Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine, 2009, 27, 4412-4423.	3.8	142
85	Contribution of α/β and γ/δ T lymphocytes to immunity againstMycobacterium bovis Bacillus Calmette Guérin: studies with T cell receptor-deficient mutant mice. European Journal of Immunology, 1995, 25, 838-846.	2.9	138
86	Human Â-defensins neutralize anthrax lethal toxin and protect against its fatal consequences. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4830-4835.	7.1	138
87	Recombinant BCG ΔureC hly+ Induces Superior Protection Over Parental BCG by Stimulating a Balanced Combination of Type 1 and Type 17 Cytokine Responses. Journal of Infectious Diseases, 2011, 204, 1573-1584.	4.0	137
88	Diagnostic performance of a seven-marker serum protein biosignature for the diagnosis of active TB disease in African primary healthcare clinic attendees with signs and symptoms suggestive of TB. Thorax, 2016, 71, 785-794.	5.6	134
89	The many faces of host responses to tuberculosis. Immunology, 2001, 103, 1-9.	4.4	133
90	The Recombinant Bacille Calmette–Guérin Vaccine VPM1002: Ready for Clinical Efficacy Testing. Frontiers in Immunology, 2017, 8, 1147.	4.8	133

#	Article	IF	CITATIONS
91	Mycobacterium tuberculosis and the host response. Journal of Experimental Medicine, 2005, 201, 1693-1697.	8.5	132
92	Mycobacterium tuberculosisTriggers Formation of Lymphoid Structure in Murine Lungs. Journal of Infectious Diseases, 2007, 195, 46-54.	4.0	132
93	Liver NKT cells: an account of heterogeneity. Trends in Immunology, 2003, 24, 364-369.	6.8	131
94	Novel Vaccination Strategies against Tuberculosis. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a018523-a018523.	6.2	131
95	Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency. Nature Biotechnology, 2005, 23, 1440-1444.	17.5	129
96	Metabolite changes in blood predict the onset of tuberculosis. Nature Communications, 2018, 9, 5208.	12.8	129
97	Role of T Cell Subsets in Immunity against Intracellular Bacteria: Experimental Infections of Knock-Out Mice with Listeria monocytogenes and Mycobacterium bovis BCG. Immunobiology, 1994, 191, 509-519.	1.9	127
98	Human isotypeâ€dependent inhibitory antibody responses against <i>Mycobacterium tuberculosis</i> . EMBO Molecular Medicine, 2016, 8, 1325-1339.	6.9	127
99	Identification of T-Cell Antigens Specific for Latent Mycobacterium Tuberculosis Infection. PLoS ONE, 2009, 4, e5590.	2.5	126
100	Tuberculosis vaccines: Time to think about the next generation. Seminars in Immunology, 2013, 25, 172-181.	5.6	125
101	Autoimmune Intestinal Pathology Induced by hsp60-Specific CD8 T Cells. Immunity, 1999, 11, 349-358.	14.3	124
102	Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cellular Microbiology, 2008, 10, 1530-1545.	2.1	122
103	Immune responses to intracellular bacteria. Current Opinion in Immunology, 2001, 13, 417-428.	5.5	121
104	Novel approaches to tuberculosis vaccine development. International Journal of Infectious Diseases, 2017, 56, 263-267.	3.3	120
105	Tumor necrosis factor alpha in mycobacterial infection. Seminars in Immunology, 2014, 26, 203-209.	5.6	119
106	The SysteMHC Atlas project. Nucleic Acids Research, 2018, 46, D1237-D1247.	14.5	119
107	Next-Generation Vaccines Based on Bacille Calmette–Guérin. Frontiers in Immunology, 2018, 9, 121.	4.8	119
108	Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against <i>Mycobacterium tuberculosis</i> in human and murine cells. European Journal of Immunology, 2016, 46, 2574-2586.	2.9	118

#	Article	IF	CITATIONS
109	Immune Response against Heat Shock Proteins in Infectious Diseases. Immunobiology, 1999, 201, 22-35.	1.9	117
110	Modulation of T cell development and activation by novel members of the Schlafen (slfn) gene family harbouring an RNA helicase-like motif. International Immunology, 2004, 16, 1535-1548.	4.0	117
111	Heat-Shock Protein 60: Implications for Pathogenesis of and Protection against Bacterial Infections. Immunological Reviews, 1991, 121, 67-90.	6.0	116
112	Induction of IFN-Î ³ -producing CD4+ natural killer T cells byMycobacterium bovis bacillus Calmette Guérin. European Journal of Immunology, 1999, 29, 650-659.	2.9	114
113	Scale-up of services and research priorities for diagnosis, management, and control of tuberculosis: a call to action. Lancet, The, 2010, 375, 2179-2191.	13.7	114
114	Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis. Seminars in Immunopathology, 2016, 38, 153-166.	6.1	114
115	Macrophage migration inhibitory factor (MIF) plays a pivotal role in immunity against Salmonella typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13681-13686.	7.1	113
116	Lysosomal α-Galactosidase Controls the Generation of Self Lipid Antigens for Natural Killer T Cells. Immunity, 2010, 33, 216-228.	14.3	113
117	Central Memory CD4+ T Cells Are Responsible for the Recombinant Bacillus Calmette-Guérin ΔureC::hly Vaccine's Superior Protection Against Tuberculosis. Journal of Infectious Diseases, 2014, 210, 1928-1937.	4.0	112
118	Safety and Immunogenicity of the Recombinant Mycobacterium bovis BCG Vaccine VPM1002 in HIV-Unexposed Newborn Infants in South Africa. Vaccine Journal, 2017, 24, .	3.1	112
119	Differential Organization of the Local Immune Response in Patients with Active Cavitary Tuberculosis or with Nonprogressive Tuberculoma. Journal of Infectious Diseases, 2005, 192, 89-97.	4.0	111
120	Envisioning future strategies for vaccination against tuberculosis. Nature Reviews Immunology, 2006, 6, 699-704.	22.7	109
121	Inflammation in tuberculosis: interactions, imbalances and interventions. Current Opinion in Immunology, 2013, 25, 441-449.	5.5	108
122	Concise gene signature for pointâ€ofâ€care classification of tuberculosis. EMBO Molecular Medicine, 2016, 8, 86-95.	6.9	108
123	Proteomics Reveals Open Reading Frames in <i>Mycobacterium tuberculosis</i> H37Rv Not Predicted by Genomics. Infection and Immunity, 2001, 69, 5905-5907.	2.2	107
124	Intersection of Group I CD1 Molecules and Mycobacteria in Different Intracellular Compartments of Dendritic Cells. Journal of Immunology, 2000, 164, 4843-4852.	0.8	106
125	The quest for biomarkers in tuberculosis. Drug Discovery Today, 2010, 15, 148-157.	6.4	105
126	CXCL5 Drives Neutrophil Recruitment in TH17-Mediated GN. Journal of the American Society of Nephrology: JASN, 2015, 26, 55-66.	6.1	105

#	Article	IF	CITATIONS
127	Fact and fiction in tuberculosis vaccine research: 10 years later. Lancet Infectious Diseases, The, 2011, 11, 633-640.	9.1	103
128	Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4024-32.	7.1	103
129	Characterization of the Murine T-Lymphocyte Response to Salmonella enterica Serovar Typhimurium Infection. Infection and Immunity, 2002, 70, 199-203.	2.2	102
130	Modified immunohistological staining allows detection of Ziehl-Neelsen-negative Mycobacterium tuberculosis organisms and their precise localization in human tissue. Journal of Pathology, 2005, 205, 633-640.	4.5	99
131	A nutritive view on the host–pathogen interplay. Trends in Microbiology, 2005, 13, 373-380.	7.7	99
132	Tuberculosis: Back on the Immunologists' Agenda. Immunity, 2006, 24, 351-357.	14.3	98
133	A role for ILâ€18 in protective immunity against <i>Mycobacterium tuberculosis</i> . European Journal of Immunology, 2010, 40, 396-405.	2.9	98
134	IL-4 producing CD4+ TCRα βint liver lymphocytes: influence of thymus, β2-microglobulin and NK1.1 expression. International Immunology, 1995, 7, 1729-1739.	4.0	96
135	The RD1 proteins of Mycobacterium tuberculosis: expression in Mycobacterium smegmatis and biochemical characterization. Microbes and Infection, 2003, 5, 1082-1095.	1.9	96
136	Biomarker discovery in heterogeneous tissue samples -taking the in-silico deconfounding approach. BMC Bioinformatics, 2010, 11, 27.	2.6	95
137	Host monitoring of quorum sensing during <i>Pseudomonas aeruginosa</i> infection. Science, 2019, 366, .	12.6	95
138	Application of Mycobacterial Proteomics to Vaccine Design: Improved Protection by Mycobacterium bovis BCG Prime-Rv3407 DNA Boost Vaccination against Tuberculosis. Infection and Immunity, 2004, 72, 6471-6479.	2.2	93
139	Mini-review: Regulatory T cells and infection: suppression revisited. European Journal of Immunology, 2004, 34, 306-312.	2.9	93
140	Progress and challenges in TB vaccine development. F1000Research, 2018, 7, 199.	1.6	93
141	Specific lysis ofListeria monocytogenes-infected macrophages by class II-restricted L3T4+ T cells. European Journal of Immunology, 1987, 17, 237-246.	2.9	92
142	Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by microbe-enriched dual RNA sequencing. BMC Genomics, 2015, 16, 34.	2.8	90
143	RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response. Scientific Reports, 2020, 10, 8629.	3.3	90
144	Identification of proteins fromMycobacterium tuberculosis missing in attenuatedMycobacterium bovis BCG strains. Electrophoresis, 2001, 22, 2936-2946.	2.4	89

#	Article	IF	CITATIONS
145	Recent advances towards tuberculosis control: vaccines and biomarkers. Journal of Internal Medicine, 2014, 275, 467-480.	6.0	89
146	Role of Cytokines in Tuberculosis. Immunobiology, 1993, 189, 316-339.	1.9	88
147	Interferon- \hat{I}^3 production byListeria monocytogenes-specific T cells active in cellular antibacterial immunity. European Journal of Immunology, 1983, 13, 265-268.	2.9	87
148	Surface expression by mononuclear phagocytes of an epitope shared with mycobacterial heat shock protein 60. European Journal of Immunology, 1991, 21, 1089-1092.	2.9	87
149	MiR-133b Targets Antiapoptotic Genes and Enhances Death Receptor-Induced Apoptosis. PLoS ONE, 2012, 7, e35345.	2.5	87
150	100 years of Mycobacterium bovis bacille Calmette-Guérin. Lancet Infectious Diseases, The, 2022, 22, e2-e12.	9.1	87
151	CFP10 discriminates between nonacetylated and acetylated ESAT-6 ofMycobacterium tuberculosis by differential interaction. Proteomics, 2004, 4, 2954-2960.	2.2	86
152	Tuberculosis in Africa: Learning from Pathogenesis for Biomarker Identification. Cell Host and Microbe, 2008, 4, 219-228.	11.0	85
153	Gene set enrichment for reproducible science: comparison of CERNO and eight other algorithms. Bioinformatics, 2019, 35, 5146-5154.	4.1	83
154	Critical Role of NK Cells Rather Than Vα14+NKT Cells in Lipopolysaccharide-Induced Lethal Shock in Mice. Journal of Immunology, 2002, 169, 1426-1432.	0.8	82
155	Link between Organ-specific Antigen Processing by 20S Proteasomes and CD8+ T Cell–mediated Autoimmunity. Journal of Experimental Medicine, 2002, 195, 983-990.	8.5	81
156	Apoptosis paves the detour path for CD8 T cell activation against intracellular bacteria. Cellular Microbiology, 2004, 6, 599-607.	2.1	81
157	MHC class Ia-restricted T cells partially account for β2-microglobulin-dependent resistance toMycobacterium tuberculosis. European Journal of Immunology, 2001, 31, 1944-1949.	2.9	80
158	A Dangerous Liaison between Two Major Killers. Journal of Experimental Medicine, 2003, 197, 1-5.	8.5	80
159	T cell responses of normal individuals towards recombinant protein antigens of Mycobacterium tuberculosis. European Journal of Immunology, 1988, 18, 1835-1838.	2.9	79
160	Paul Ehrlich: founder of chemotherapy. Nature Reviews Drug Discovery, 2008, 7, 373-373.	46.4	79
161	Serine protease activity contributes to control of Mycobacterium tuberculosis in hypoxic lung granulomas in mice. Journal of Clinical Investigation, 2010, 120, 3365-3376.	8.2	79
162	Development of antigen-delivery systems, based on the Escherichia coli hemolysin secretion pathway. Gene, 1996, 179, 133-140.	2.2	78

#	Article	IF	CITATIONS
163	Impact of intracellular location of and antigen display by intracellular bacteria: implications for vaccine development. Immunology Letters, 1999, 65, 81-84.	2.5	78
164	Role of CD28 for the Generation and Expansion of Antigen-Specific CD8+ T Lymphocytes During Infection with <i>Listeria monocytogenes</i> . Journal of Immunology, 2001, 167, 5620-5627.	0.8	78
165	Perspectives on host adaptation in response to Mycobacterium tuberculosis: Modulation of inflammation. Seminars in Immunology, 2014, 26, 533-542.	5.6	78
166	100th anniversary of Robert Koch's Nobel Prize for the discovery of the tubercle bacillus. Trends in Microbiology, 2005, 13, 469-475.	7.7	76
167	Mycobacterium tuberculosis-specific CD4+, IFNγ+, and TNFα+ multifunctional memory T cells coexpress GM-CSF. Cytokine, 2008, 43, 143-148.	3.2	76
168	Infection, inflammation, and chronic diseases: consequences of a modern lifestyle. Trends in Immunology, 2010, 31, 184-190.	6.8	76
169	MAPPP: MHC class I antigenic peptide processing prediction. Applied Bioinformatics, 2003, 2, 155-8.	1.6	76
170	Proteins unique to intraphagosomally grownMycobacterium tuberculosis. Proteomics, 2006, 6, 2485-2494.	2.2	75
171	Organ-Specific CD4+ T Cell Response During <i>Listeria monocytogenes</i> Infection. Journal of Immunology, 2002, 168, 6382-6387.	0.8	74
172	The Recombinant BCG Δ <i>ureC::hly</i> Vaccine Targets the AIM2 Inflammasome to Induce Autophagy and Inflammation. Journal of Infectious Diseases, 2015, 211, 1831-1841.	4.0	74
173	Interleukin-4-producing CD4+ NK1.1+ TCRα/βintermediate liver lymphocytes are down-regulated byListeria monocytogenes. European Journal of Immunology, 1995, 25, 3321-3325.	2.9	73
174	Starring stellate cells in liver immunology. Current Opinion in Immunology, 2008, 20, 68-74.	5.5	73
175	Immunology's Coming of Age. Frontiers in Immunology, 2019, 10, 684.	4.8	73
176	Discovery and validation of a prognostic proteomic signature for tuberculosis progression: A prospective cohort study. PLoS Medicine, 2019, 16, e1002781.	8.4	72
177	Antigen presentation and recognition in bacterial infections. Current Opinion in Immunology, 2005, 17, 79-87.	5.5	71
178	Tuberculosis vaccines: Time for a global strategy. Science Translational Medicine, 2015, 7, 276fs8.	12.4	71
179	Small-Molecule Scaffolds for CYP51 Inhibitors Identified by High-Throughput Screening and Defined by X-Ray Crystallography. Antimicrobial Agents and Chemotherapy, 2007, 51, 3915-3923.	3.2	70
180	Epigenetics and Proteomics Join Transcriptomics in the Quest for Tuberculosis Biomarkers. MBio, 2015, 6, e01187-15.	4.1	70

#	Article	IF	CITATIONS
181	The Mycobacterium tuberculosis LipB enzyme functions as a cysteine/lysine dyad acyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8662-8667.	7.1	68
182	The IFN-Î ³ -Inducible GTPase, Irga6, Protects Mice against Toxoplasma gondii but Not against Plasmodium berghei and Some Other Intracellular Pathogens. PLoS ONE, 2011, 6, e20568.	2.5	68
183	Recombinant live vaccine candidates against tuberculosis. Current Opinion in Biotechnology, 2012, 23, 900-907.	6.6	68
184	Protective efficacy against tuberculosis of ESAT-6 secreted by a live Salmonella typhimurium vaccine carrier strain and expressed by naked DNA. Vaccine, 2001, 19, 4028-4035.	3.8	67
185	Progress in tuberculosis vaccine development. Current Opinion in Immunology, 2006, 18, 438-448.	5.5	67
186	Tuberculosis vaccine development: strength lies in tenacity. Trends in Immunology, 2012, 33, 373-379.	6.8	67
187	The role of T cell — Macrophage interactions in tuberculosis. Seminars in Immunopathology, 1988, 10, 337-358.	4.0	66
188	Crossrecognition by CD8 T cell receptor αβ cytotoxic T lymphocytes of peptides in the self and the mycobacterial hsp60 which share intermediate sequence homology. European Journal of Immunology, 1995, 25, 451-458.	2.9	65
189	TLR3 regulates mycobacterial RNA-induced IL-10 production through the PI3K/AKT signaling pathway. Cellular Signalling, 2014, 26, 942-950.	3.6	65
190	Increased Numbers of ESAT-6- and Purified Protein Derivative-Specific Gamma Interferon-Producing Cells in Subclinical and Active Tuberculosis Infection. Infection and Immunity, 2000, 68, 6073-6076.	2.2	64
191	Critical Role of Methylglyoxal and AGE in Mycobacteria-Induced Macrophage Apoptosis and Activation. PLoS ONE, 2006, 1, e29.	2.5	64
192	Mycobacterium tuberculosis gene expression profiling within the context of protein networks. Microbes and Infection, 2006, 8, 747-757.	1.9	64
193	Cells as Factories for Humanized Encapsulation. Nano Letters, 2011, 11, 2152-2156.	9.1	64
194	Immune Mechanisms of Protection. , 0, , 387-415.		64
195	Iron Chelation Via Deferoxamine Exacerbates Experimental Salmonellosis Via Inhibition of the Nicotinamide Adenine Dinucleotide Phosphate Oxidase-Dependent Respiratory Burst. Journal of Immunology, 2002, 168, 3458-3463.	0.8	63
196	Potential of novel Mycobacterium tuberculosis infection phase-dependent antigens in the diagnosis of TB disease in a high burden setting. BMC Infectious Diseases, 2012, 12, 10.	2.9	63
197	Targeting multidrug-resistant tuberculosis (MDR-TB) by therapeutic vaccines. Medical Microbiology and Immunology, 2013, 202, 95-104.	4.8	63
198	Versatile myeloid cell subsets contribute to tuberculosisâ€associated inflammation. European Journal of Immunology, 2015, 45, 2191-2202.	2.9	63

#	Article	IF	CITATIONS
199	B Cells Producing Type I IFN Modulate Macrophage Polarization in Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 801-813.	5.6	63
200	Exploiting the immune system: Toward new vaccines against intracellular bacteria. Advances in Immunology, 2000, 75, 1-88.	2.2	62
201	Recent findings in immunology give tuberculosis vaccines a new boost. Trends in Immunology, 2005, 26, 660-667.	6.8	62
202	Antigen 85C Inhibition Restricts Mycobacterium tuberculosis Growth through Disruption of Cord Factor Biosynthesis. Antimicrobial Agents and Chemotherapy, 2012, 56, 1735-1743.	3.2	62
203	The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Review of Vaccines, 2014, 13, 619-630.	4.4	62
204	Deletion of <i>nuoG</i> from the Vaccine Candidate Mycobacterium bovis BCG Δ <i>ureC</i> :: <i>hly</i> Improves Protection against Tuberculosis. MBio, 2016, 7, .	4.1	62
205	Novel tuberculosis vaccines on the horizon. Current Opinion in Immunology, 2010, 22, 374-384.	5.5	61
206	Direct blotting with viable cells of protein mixtures separated by two-dimensional gel electrophoresis. Journal of Immunological Methods, 1990, 133, 253-261.	1.4	60
207	Differential requirements for the chemokine receptor CCR7 in T cell activation during Listeria monocytogenes infection. Journal of Experimental Medicine, 2005, 201, 1447-1457.	8.5	60
208	The recombinant tuberculosis vaccine rBCG ΔureC::hly+ induces apoptotic vesicles for improved priming of CD4+ and CD8+ T cells. Vaccine, 2012, 30, 7608-7614.	3.8	60
209	Challenges and responses in human vaccine development. Current Opinion in Immunology, 2014, 28, 18-26.	5.5	60
210	Bacterial and protozoal infections in genetically disrupted mice. Current Opinion in Immunology, 1994, 6, 518-525.	5.5	59
211	Recombinant attenuated bacteria for the delivery of subunit vaccines. Vaccine, 2001, 19, 2621-2628.	3.8	59
212	gp96-Peptide Vaccination of Mice against Intracellular Bacteria. Infection and Immunity, 2001, 69, 4164-4167.	2.2	59
213	Immunogenicity and Protective Efficacy of Prime-Boost Regimens with Recombinant Δ <i>ureC hly</i> ⁺ <i>Mycobacterium bovis</i> BCG and Modified Vaccinia Virus Ankara Expressing <i>M. tuberculosis</i> Antigen 85A against Murine Tuberculosis. Infection and Immunity, 2009, 77, 622-631.	2.2	59
214	Vaccination Against Tuberculosis: Revamping BCG by Molecular Genetics Guided by Immunology. Frontiers in Immunology, 2020, 11, 316.	4.8	59
215	Mycobacterial Lysocardiolipin Is Exported from Phagosomes upon Cleavage of Cardiolipin by a Macrophage-Derived Lysosomal Phospholipase A2. Journal of Immunology, 2001, 167, 2187-2192.	0.8	58
216	The E3 ubiquitin ligase NEDD4 enhances killing of membrane-perturbing intracellular bacteria by promoting autophagy. Autophagy, 2017, 13, 2041-2055.	9.1	58

#	Article	IF	CITATIONS
217	Comparative Analysis of Different Vaccine Constructs Expressing Defined Antigens fromMycobacterium tuberculosis. Journal of Infectious Diseases, 2004, 190, 2146-2153.	4.0	57
218	CD1 Antigen Presentation by Human Dendritic Cells as a Target for Herpes Simplex Virus Immune Evasion. Journal of Immunology, 2006, 177, 6207-6214.	0.8	57
219	Identification of acidic, low molecular mass proteins ofMycobacterium tuberculosis strain H37Rv by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Proteomics, 2001, 1, 494-507.	2.2	56
220	Neutrophilia in LFA-1-Deficient Mice Confers Resistance to Listeriosis: Possible Contribution of Granulocyte-Colony-Stimulating Factor and IL-17. Journal of Immunology, 2003, 170, 5228-5234.	0.8	56
221	The IFN-Inducible Golgi- and Endoplasmic Reticulum- Associated 47-kDa GTPase IIGP Is Transiently Expressed During Listeriosis. Journal of Immunology, 2002, 168, 3428-3436.	0.8	55
222	Floating between the poles of pathology and protection: can we pin down the granuloma in tuberculosis?. Current Opinion in Microbiology, 2012, 15, 63-70.	5.1	53
223	Comparative Systems Analyses Reveal Molecular Signatures of Clinically tested Vaccine Adjuvants. Scientific Reports, 2016, 6, 39097.	3.3	53
224	<scp>cGAS</scp> facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity. EMBO Reports, 2019, 20, .	4.5	53
225	Regulatory Interactions Between Macrophages and T-Cell Subsets in Listeria monocytogenes -Specific T-Cell Activation. Infection and Immunity, 1982, 38, 907-913.	2.2	53
226	Lysis of interferon- \hat{I}^3 activated Schwann cell by cross-reactive CD8+ $\hat{a}^*\hat{I}^2$ T cells with specificity for the mycobacterial 65 kd heat shock protein. International Immunology, 1990, 2, 279-284.	4.0	52
227	Novel strategies to identify biomarkers in tuberculosis. Biological Chemistry, 2008, 389, 487-95.	2.5	52
228	Human and Mouse Hematopoietic Stem Cells Are a Depot for Dormant Mycobacterium tuberculosis. PLoS ONE, 2017, 12, e0169119.	2.5	52
229	ESAT-6–dependent cytosolic pattern recognition drives noncognate tuberculosis control in vivo. Journal of Clinical Investigation, 2016, 126, 2109-2122.	8.2	52
230	The B cell repertoire of patients with rheumatoid arthritis. II. Increased frequencies of IgG+ and IgA+ B cells specific for mycobacterial heatâ€shock protein 60 or human type II collagen in synovial fluid and tissue. Arthritis and Rheumatism, 1997, 40, 1409-1419.	6.7	51
231	Prospects for better tuberculosis vaccines. Lancet Infectious Diseases, The, 2001, 1, 21-28.	9.1	51
232	Delivery of DNA vaccines by attenuated intracellular bacteria. Trends in Immunology, 1999, 20, 251-253.	7.5	50
233	Bacterial virulence, proinflammatory cytokines and host immunity: how to choose the appropriate Salmonella vaccine strain?. Microbes and Infection, 2001, 3, 1261-1269.	1.9	50
234	Changing funding patterns in tuberculosis. Nature Medicine, 2007, 13, 299-303.	30.7	50

#	Article	IF	CITATIONS
235	Ten years of the Global Alliance for Vaccines and Immunization: challenges and progress. Nature Immunology, 2010, 11, 1069-1072.	14.5	50
236	Ten challenges for TB biomarkers. Tuberculosis, 2012, 92, S17-S20.	1.9	50
237	Remembering Emil von Behring: from Tetanus Treatment to Antibody Cooperation with Phagocytes. MBio, 2017, 8, .	4.1	50
238	Potential of Host Markers Produced by Infection Phase-Dependent Antigen-Stimulated Cells for the Diagnosis of Tuberculosis in a Highly Endemic Area. PLoS ONE, 2012, 7, e38501.	2.5	50
239	Application of knockout mice to the experimental analysis of infections with bacteria and protozoa. Trends in Microbiology, 1994, 2, 235-242.	7.7	49
240	Cell-Mediated Immunity Induced by Recombinant <i>Mycobacterium bovis</i> Bacille Calmette-Guelrin Strains Against an Intracellular Bacterial Pathogen: Importance of Antigen Secretion or Membrane-Targeted Antigen Display as Lipoprotein for Vaccine Efficacy. Journal of Immunology, 2002, 168, 1869-1876.	0.8	49
241	Immune Response to Postprimary Tuberculosis in Mice:Mycobacterium tuberculosisandMiycobacterium bovisbacille Calmetteâ€Guérin Induce Equal Protection. Journal of Infectious Diseases, 2004, 190, 588-597.	4.0	49
242	From bacteriology to immunology: the dualism of specificity. Nature Immunology, 2005, 6, 1063-1066.	14.5	49
243	Human α-defensins neutralize toxins of the mono-ADP-ribosyltransferase family. Biochemical Journal, 2006, 399, 225-229.	3.7	49
244	Intracellular Bacteria as Targets and Carriers for Vaccination. Biological Chemistry, 2001, 382, 521-32.	2.5	48
245	Robert Koch, the Nobel Prize, and the Ongoing Threat of Tuberculosis. New England Journal of Medicine, 2005, 353, 2423-2426.	27.0	48
246	The volatiles of pathogenic and nonpathogenic mycobacteria and related bacteria. Beilstein Journal of Organic Chemistry, 2012, 8, 290-299.	2.2	48
247	Analysis of Host Responses to Mycobacterium tuberculosis Antigens in a Multi-Site Study of Subjects with Different TB and HIV Infection States in Sub-Saharan Africa. PLoS ONE, 2013, 8, e74080.	2.5	48
248	Protection against murine tuberculosis by an attenuated recombinantSalmonella typhimuriumvaccine strain that secretes the 30-kDa antigen ofMycobacterium bovisBCG. FEMS Immunology and Medical Microbiology, 2000, 27, 283-289.	2.7	47
249	Enhanced protective efficacy of a tuberculosis DNA vaccine by adsorption onto cationic PLG microparticles. Vaccine, 2004, 22, 2690-2695.	3.8	47
250	Secondary lymphoid organs are dispensable for the development of Tâ€cellâ€mediated immunity during tuberculosis. European Journal of Immunology, 2010, 40, 1663-1673.	2.9	47
251	Alternative antigen processing pathways in anti-infective immunity. Current Opinion in Immunology, 1997, 9, 462-469.	5.5	46
252	Dynamic Mechano-Regulation of Myoblast Cells on Supramolecular Hydrogels Cross-Linked by Reversible Host-Guest Interactions. Scientific Reports, 2017, 7, 7660.	3.3	46

#	Article	IF	CITATIONS
253	Interleukin 2 Induction in Lyt 1 ⁺ 23 ^{â^'} T Cells from <i>Listeria monocytogenes</i> -Immune Mice. Infection and Immunity, 1982, 37, 1292-1294.	2.2	46
254	Platelets Direct Monocyte Differentiation Into Epithelioid-Like Multinucleated Giant Foam Cells With Suppressive Capacity Upon Mycobacterial Stimulation. Journal of Infectious Diseases, 2014, 210, 1700-1710.	4.0	45
255	Serologic diagnosis of tuberculosis by combining Ig classes against selected mycobacterial targets. Journal of Infection, 2014, 69, 581-589.	3.3	45
256	Vaccination Against Tuberculosis With Whole-Cell Mycobacterial Vaccines. Journal of Infectious Diseases, 2016, 214, 659-664.	4.0	45
257	Bacille Calmette Guérin and interleukin-12 down-modulate interleukin-4-producing CD4+ NK1+ T lymphocytes. European Journal of Immunology, 1997, 27, 183-188.	2.9	44
258	From evil to good: a cytolysin in vaccine development. Trends in Microbiology, 2001, 9, 23-28.	7.7	44
259	Immunoproteasomes Are Essential for Clearance of <i>Listeria monocytogenes</i> in Nonlymphoid Tissues but Not for Induction of Bacteria-Specific CD8+ T Cells. Journal of Immunology, 2006, 177, 6238-6244.	0.8	44
260	Inhibition of CD1 Antigen Presentation by Human Cytomegalovirus. Journal of Virology, 2008, 82, 4308-4319.	3.4	44
261	TBVAC2020: Advancing Tuberculosis Vaccines from Discovery to Clinical Development. Frontiers in Immunology, 2017, 8, 1203.	4.8	44
262	Africa-wide evaluation of host biomarkers in QuantiFERON supernatants for the diagnosis of pulmonary tuberculosis. Scientific Reports, 2018, 8, 2675.	3.3	44
263	A novel PrfA-regulated chromosomal locus, which is specific forListeria ivanovii, encodes two small, secreted internalins and contributes to virulence in mice. Molecular Microbiology, 1998, 30, 405-417.	2.5	43
264	Role of macrophages and \hat{l} ± \hat{l}^2 T lymphocytes in early interleukin 10 production during Listeria monocytogenes infection. International Immunology, 1994, 6, 463-468.	4.0	42
265	Presentation ofListeria monocytogenes antigens by major histocompatibility complex class I molecules to CD8 cytotoxic T lymphocytes independent of listeriolysin secretion and virulence. European Journal of Immunology, 1994, 24, 1471-1477.	2.9	42
266	A Serum Circulating miRNA Signature for Short-Term Risk of Progression to Active Tuberculosis Among Household Contacts. Frontiers in Immunology, 2018, 9, 661.	4.8	42
267	Webâ€accessible proteome databases for microbial research. Proteomics, 2004, 4, 1305-1313.	2.2	41
268	Viral danger signals control CD1d <i>de novo</i> synthesis and NKT cell activation. European Journal of Immunology, 2008, 38, 668-679.	2.9	40
269	Toward a Unified Biosignature for Tuberculosis. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a018531-a018531.	6.2	40
270	Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome. Frontiers in Immunology, 2019, 10, 527.	4.8	40

#	Article	IF	CITATIONS
271	Activated Pulmonary Macrophages Are Insufficient for Resistance against <i>Pneumocystis carinii</i> . Infection and Immunity, 1998, 66, 305-314.	2.2	40
272	The Type 1 Cysteinyl Leukotriene Receptor Triggers Calcium Influx and Chemotaxis in Mouse αβ- and γδ Effector T Cells. Journal of Immunology, 2005, 175, 713-719.	0.8	39
273	Role of Local Pulmonary IFN-Î ³ Expression in Murine Allergic Airway Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 211-219.	2.9	39
274	Mycobacterium tuberculosis infection modulates adipose tissue biology. PLoS Pathogens, 2017, 13, e1006676.	4.7	39
275	Substantialin vivo proliferation of CD4+ and CD8+ T lymphocytes during secondaryListeria monocytogenes infection. European Journal of Immunology, 2000, 30, 1053-1059.	2.9	37
276	Inducible Costimulator Protein Controls the Protective T Cell Response AgainstListeria monocytogenes. Journal of Immunology, 2002, 169, 5813-5817.	0.8	37
277	Bacillus anthracis: Balancing innocent research with dual-use potential. International Journal of Medical Microbiology, 2008, 298, 345-364.	3.6	37
278	The dual role of biomarkers for understanding basic principles and devising novel intervention strategies in tuberculosis. Annals of the New York Academy of Sciences, 2013, 1283, 22-29.	3.8	37
279	<i>Salmonella</i> SiiE prevents an efficient humoral immune memory by interfering with IgG ⁺ plasma cell persistence in the bone marrow. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7425-7430.	7.1	37
280	Cell-mediated immunity: Dealing a direct blow to pathogens. Current Biology, 1999, 9, R97-R99.	3.9	36
281	Introduction: microbiology and immunology: lessons learned from Salmonella. Microbes and Infection, 2001, 3, 1177-1181.	1.9	36
282	Involvement of Mycobacterium smegmatis undecaprenyl phosphokinase in biofilm and smegma formation. Microbes and Infection, 2004, 6, 965-971.	1.9	36
283	Comparative transcriptional profiling of the lung reveals shared and distinct features of Streptococcus pneumoniae and influenza A virus infection. Immunology, 2007, 120, 380-391.	4.4	36
284	Natural killer Tâ€cell characterization through gene expression profiling: an account of versatility bridging T helper type 1 (Th1), Th2 and Th17 immune responses. Immunology, 2008, 123, 45-56.	4.4	36
285	Introduction of protein or DNA delivered via recombinant Salmonella typhimurium into the major histocompatibility complex class I presentation pathway of macrophages. Microbes and Infection, 1999, 1, 113-121.	1.9	35
286	CD1 and CD1-restricted T cells in infections with intracellular bacteria. Trends in Microbiology, 2000, 8, 419-425.	7.7	35
287	Rational design of vaccines against tuberculosis directed by basic immunology. International Journal of Medical Microbiology, 2008, 298, 143-150.	3.6	35
288	Can the battle against tuberculosis gain from epigenetic research?. Trends in Microbiology, 2012, 20, 220-226.	7.7	35

#	Article	IF	CITATIONS
289	Tuberculosis vaccine development at a divide. Current Opinion in Pulmonary Medicine, 2014, 20, 294-300.	2.6	35
290	Differential transcriptomic and metabolic profiles of M. africanum- and M. tuberculosis-infected patients after, but not before, drug treatment. Genes and Immunity, 2015, 16, 347-355.	4.1	35
291	IL-36/LXR axis modulates cholesterol metabolism and immune defense to Mycobacterium tuberculosis. Scientific Reports, 2018, 8, 1520.	3.3	35
292	DNA vaccination with gp96-peptide fusion proteins induces protection against an intracellular bacterial pathogen. International Immunology, 2004, 16, 597-605.	4.0	34
293	Improved protection by recombinant BCG. Microbes and Infection, 2005, 7, 939-946.	1.9	34
294	Defensin: a multifunctional molecule lives up to its versatile name. Trends in Microbiology, 2006, 14, 428-431.	7.7	34
295	X-ray Structure of 4,4′-Dihydroxybenzophenone Mimicking Sterol Substrate in the Active Site of Sterol 14α-Demethylase (CYP51). Journal of Biological Chemistry, 2008, 283, 15152-15159.	3.4	34
296	Diagnosis of Tuberculosis by Trained African Giant Pouched Rats and Confounding Impact of Pathogens and Microflora of the Respiratory Tract. Journal of Clinical Microbiology, 2012, 50, 274-280.	3.9	34
297	Antigen Export during Liver Infection of the Malaria Parasite Augments Protective Immunity. MBio, 2014, 5, e01321-14.	4.1	34
298	Cellular stress promotes NOD1/2â€dependent inflammation via the endogenous metabolite sphingosineâ€1â€phosphate. EMBO Journal, 2021, 40, e106272.	7.8	34
299	CD1 molecules and CD1-dependent T cells in bacterial infections: a link from innate to acquired immunity?. Seminars in Immunology, 2000, 12, 527-535.	5.6	33
300	Rasâ€Associated Small GTPase 33A, a Novel T Cell Factor, Is Downâ€Regulated in Patients with Tuberculosis. Journal of Infectious Diseases, 2005, 192, 1211-1218.	4.0	33
301	The Early Transcriptional Response of Human Granulocytes to Infection with Candida albicans Is Not Essential for Killing but Reflects Cellular Communications. Infection and Immunity, 2007, 75, 1493-1501.	2.2	33
302	An improved strategy for selective and efficient enrichment of integral plasma membrane proteins of mycobacteria. Proteomics, 2007, 7, 1687-1701.	2.2	33
303	Fine-tuning of T cell responses during infection. Current Opinion in Immunology, 2009, 21, 367-377.	5.5	33
304	Detection and treatment of subclinical tuberculosis. Tuberculosis, 2012, 92, 447-452.	1.9	33
305	Host-directed therapy of tuberculosis: what is in it for microRNA?. Expert Opinion on Therapeutic Targets, 2014, 18, 491-494.	3.4	33
306	Concordant and discordant gene expression patterns in mouse strains identify best-fit animal model for human tuberculosis. Scientific Reports, 2017, 7, 12094.	3.3	33

#	Article	IF	CITATIONS
307	Identification of Salmonella typhimurium genes responsible for interference with peptide presentation on MHC class I molecules: Deltayej Salmonella mutants induce superior CD8+ T-cell responses. Cellular Microbiology, 2004, 6, 1057-1070.	2.1	32
308	Transcriptional responses in mouse lungs induced by vaccination with Mycobacterium bovis BCG and infection with Mycobacterium tuberculosis. Microbes and Infection, 2006, 8, 136-144.	1.9	32
309	Combination of Host Susceptibility and Virulence ofMycobacterium tuberculosisDetermines Dual Role of Nitric Oxide in the Protection and Control of Inflammation. Journal of Infectious Diseases, 2009, 199, 1222-1232.	4.0	32
310	Improved long-term protection against Mycobacterium tuberculosis Beijing/W in mice after intra-dermal inoculation of recombinant BCG expressing latency associated antigens. Vaccine, 2011, 29, 8740-8744.	3.8	32
311	Role of Interleukin 36Î ³ in Host Defense Against Tuberculosis. Journal of Infectious Diseases, 2016, 214, 464-474.	4.0	32
312	High-throughput and computational approaches for diagnostic and prognostic host tuberculosis biomarkers. International Journal of Infectious Diseases, 2017, 56, 258-262.	3.3	32
313	Human Monocytic Suppressive Cells Promote Replication of Mycobacterium tuberculosis and Alter Stability of in vitro Generated Granulomas. Frontiers in Immunology, 2018, 9, 2417.	4.8	32
314	Listeriosis: new findings—current concern. Microbial Pathogenesis, 1988, 5, 225-231.	2.9	31
315	Nitric oxide production and mycobacterial growth inhibition by murine alveolar macrophages: the sequence of rIFN-γ stimulation and Mycobacterium bovis BCG infection determines macrophage activation. Immunology Letters, 1995, 45, 23-27.	2.5	31
316	Phenotypically Activated γδT Lymphocytes in the Peripheral Blood of Patients with Tuberculosis. Journal of Infectious Diseases, 1999, 180, 141-149.	4.0	31
317	Immune response to tuberculosis: experimental animal models. Tuberculosis, 2003, 83, 107-111.	1.9	31
318	Analysis of protein species differentiation among mycobacterial low-Mr-secreted proteins by narrow pH range Immobiline gel 2-DE-MALDI-MS. Journal of Proteomics, 2014, 97, 235-244.	2.4	31
319	Highly Biased Type 1 Immune Responses in Mice Deficient in LFA-1 inListeria monocytogenesInfection Are Caused by Elevated IL-12 Production by Granulocytes. Journal of Immunology, 2003, 171, 3970-3976.	0.8	30
320	Depletion of CD4+T Cells during Immunization with NonviableListeria monocytogenesCauses Enhanced CD8+T Cell-Mediated Protection against Listeriosis. Journal of Immunology, 2004, 172, 3167-3172.	0.8	30
321	Combination of gene expression patterns in whole blood discriminate between tuberculosis infection states. BMC Infectious Diseases, 2014, 14, 257.	2.9	30
322	Developmental transcriptome of resting cell formation in Mycobacterium smegmatis. BMC Genomics, 2016, 17, 837.	2.8	30
323	Induction of CCL8/MCP-2 by Mycobacteria through the Activation of TLR2/PI3K/Akt Signaling Pathway. PLoS ONE, 2013, 8, e56815.	2.5	30
324	Vaccine Development Against Tuberculosis Over the Last 140 Years: Failure as Part of Success. Frontiers in Microbiology, 2021, 12, 750124.	3.5	30

#	Article	IF	CITATIONS
325	Partially TAP-Independent Protection AgainstListeria monocytogenesby H2-M3-Restricted CD8+T Cells. Journal of Immunology, 2000, 165, 4575-4580.	0.8	29
326	Protein identification and tracking in two-dimensional electrophoretic gels by minimal protein identifiers. Proteomics, 2004, 4, 2927-2941.	2.2	29
327	A Multicistronic DNA Vaccine Induces Significant Protection against Tuberculosis in Mice and Offers Flexibility in the Expressed Antigen Repertoire. Vaccine Journal, 2009, 16, 1467-1475.	3.1	29
328	Mycobacterium tuberculosis volatiles for diagnosis of tuberculosis by Cricetomys rats. Tuberculosis, 2012, 92, 535-542.	1.9	29
329	Nonclinical Development of BCG Replacement Vaccine Candidates. Vaccines, 2013, 1, 120-138.	4.4	29
330	Communication between Human Dendritic Cell Subsets in Tuberculosis: Requirements for Naive CD4+ T Cell Stimulation. Frontiers in Immunology, 2014, 5, 324.	4.8	29
331	Mycobacterium tuberculosis Invasion of the Human Lung: First Contact. Frontiers in Immunology, 2018, 9, 1346.	4.8	29
332	Attempts to characterize the T-cell population and lymphokine involved in the activation of macrophage oxygen metabolism in murine listeriosis. Cellular Immunology, 1984, 88, 545-550.	3.0	28
333	Cytolytic T-cell responses to human dendritic cells and macrophages infected with Mycobacterium bovis BCG and recombinant BCG secreting listeriolysin. Microbes and Infection, 1999, 1, 753-764.	1.9	28
334	Helicobacter pylori infection in wild-type and cytokine-deficient C57BL/6 and BALB/c mouse mutants. Microbes and Infection, 2000, 2, 593-597.	1.9	28
335	IICP, a member of the IFN inducible and microbial defense mediating 47 kDa GTPase family, interacts with the microtubule binding protein hook3. Journal of Cell Science, 2004, 117, 1747-1756.	2.0	28
336	Evaluation of cytokine responses against novel Mtb antigens as diagnostic markers for TB disease. Journal of Infection, 2016, 73, 219-230.	3.3	28
337	Inter-laboratory validation of PCR-based detection of Mycobacterium tuberculosis in formalin-fixed, paraffin-embedded tissues. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2005, 447, 573-585.	2.8	27
338	Crosstalk between human DC subsets promotes antibacterial activity and CD 8 + T â€cell stimulation in response to bacille C almette―G uérin. European Journal of Immunology, 2014, 44, 80-92.	2.9	27
339	Syndecans promote mycobacterial internalization by lung epithelial cells. Cellular Microbiology, 2016, 18, 1846-1856.	2.1	27
340	Phagosomal Copper-Promoted Oxidative Attack on Intracellular <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2018, 4, 1623-1634.	3.8	27
341	Prediction of anti-tuberculosis treatment duration based on a 22-gene transcriptomic model. European Respiratory Journal, 2021, 58, 2003492.	6.7	27
342	Elongated peptides, not the predicted nonapeptide stimulate a major histocompatibility complex class I-restricted cytotoxic T lymphocyte clone with specificity for a bacterial heat shock protein. European Journal of Immunology, 1994, 24, 3161-3169.	2.9	26

#	Article	IF	CITATIONS
343	Quantification of protein in dilute and complex samples: modification of the bicinchoninic acid assay. Journal of Proteomics, 1995, 30, 199-206.	2.4	26
344	Cutting Edge: Contribution of NK Cells to the Homing of Thymic CD4+NKT Cells to the Liver. Journal of Immunology, 2000, 165, 1729-1732.	0.8	26
345	Aryl Hydrocarbon Receptor Modulation by Tuberculosis Drugs Impairs Host Defense and Treatment Outcomes. Cell Host and Microbe, 2020, 27, 238-248.e7.	11.0	26
346	Therapies for tuberculosis and AIDS: myeloid-derived suppressor cells in focus. Journal of Clinical Investigation, 2020, 130, 2789-2799.	8.2	26
347	A Mouse Model of Latent Tuberculosis Infection to Study Intervention Strategies to Prevent Reactivation. PLoS ONE, 2016, 11, e0158849.	2.5	26
348	Role of T-cell subsets in bacterial infections. Current Opinion in Immunology, 1991, 3, 465-470.	5.5	25
349	Differential tolerance induction by lipoarabinomannan and lipopolysaccharide in human macrophages. Microbes and Infection, 2000, 2, 463-471.	1.9	25
350	A short history of Robert Koch's fight against tuberculosis: Those who do not remember the past are condemned to repeat it. Tuberculosis, 2003, 83, 86-90.	1.9	25
351	Salmonella typhimuriumStrains Carrying Independent Mutations Display Similar Virulence Phenotypes Yet Are Controlled by Distinct Host Defense Mechanisms. Journal of Immunology, 2003, 170, 6133-6140.	0.8	25
352	Identification of potential biomarkers of vaccine inflammation in mice. ELife, 2019, 8, .	6.0	25
353	Heat shock proteins in health and disease. International Journal of Clinical and Laboratory Research, 1992, 21, 221-226.	1.0	24
354	Control of thymus-independent intestinal intraepithelial lymphocytes by β2-microglobulin. European Journal of Immunology, 1995, 25, 2332-2339.	2.9	24
355	Live antigen carriers as tools for improved anti-tuberculosis vaccines. FEMS Immunology and Medical Microbiology, 1999, 23, 165-173.	2.7	24
356	Rapid Development of a Gamma Interferon-Secreting Glycolipid/CD1d-Specific Vα14 + NK1.1 â^' T-Cell Subset after Bacterial Infection. Infection and Immunity, 2006, 74, 5903-5913.	2.2	24
357	Exploring functional genomics for the development of novel intervention strategies against tuberculosis. International Journal of Medical Microbiology, 2007, 297, 559-567.	3.6	24
358	A universal TaqMan-based RT-PCR protocol for cost-efficient detection of small noncoding RNA. Rna, 2013, 19, 1864-1873.	3.5	24
359	The Tuberculosis Vaccine Candidate Bacillus Calmette-Guérin ΔureC::hly Coexpressing Human Interleukin-7 or -18 Enhances Antigen-Specific T Cell Responses in Mice. PLoS ONE, 2013, 8, e78966.	2.5	24
360	Tuberculosis endotypes to guide stratified host-directed therapy. Med, 2021, 2, 217-232.	4.4	24

#	Article	IF	CITATIONS
361	Isolation of RNA from mycobacteria grown under in vitro and in vivo conditions. FEMS Microbiology Letters, 2000, 186, 177-180.	1.8	23
362	Protective T cell response against intracellular pathogens in the absence of Toll-like receptor signaling via myeloid differentiation factor 88. International Immunology, 2004, 16, 415-421.	4.0	23
363	Variable outcome of experimental interferon-? therapy of disseminated Bacillus Calmette-Guerin infection in two unrelated interleukin-12R?1-deficient Slovakian children. European Journal of Pediatrics, 2005, 164, 166-172.	2.7	23
364	Elie Metchnikoff's and Paul Ehrlich's impact on infection biology. Microbes and Infection, 2008, 10, 1417-1419.	1.9	23
365	Combination of host susceptibility and <i>Mycobacterium tuberculosis</i> virulence define gene expression profile in the host. European Journal of Immunology, 2009, 39, 3369-3384.	2.9	23
366	TLR2-, TLR4- and Myd88-independent acquired humoral and cellular immunity against Salmonella enterica serovar Typhimurium. Immunology Letters, 2010, 127, 126-134.	2.5	23
367	Intracellular pathogens: living in an extreme environment. Immunological Reviews, 2011, 240, 5-10.	6.0	23
368	Humanized Mouse Model Mimicking Pathology of Human Tuberculosis for in vivo Evaluation of Drug Regimens. Frontiers in Immunology, 2019, 10, 89.	4.8	23
369	Enumeration of Listeria monocytogenes-reactive L3T4+ T cells activated during infection. Microbial Pathogenesis, 1986, 1, 249-260.	2.9	22
370	The superantigen exfoliative toxin induces cutaneous lymphocyte-associated antigen expression in peripheral human T lymphocytes. Immunology Letters, 1996, 49, 111-116.	2.5	22
371	Mycobacterial persistence and immunity. Frontiers in Bioscience - Landmark, 2002, 7, d458-469.	3.0	22
372	Reverse Translation in Tuberculosis: Neutrophils Provide Clues for Understanding Development of Active Disease. Frontiers in Immunology, 2014, 5, 36.	4.8	22
373	Dysregulation of Apoptosis Is a Risk Factor for Tuberculosis Disease Progression. Journal of Infectious Diseases, 2015, 212, 1469-1479.	4.0	22
374	NOS2-deficient mice with hypoxic necrotizing lung lesions predict outcomes of tuberculosis chemotherapy in humans. Scientific Reports, 2017, 7, 8853.	3.3	22
375	IL-4 and T Cells Are Required for the Generation of IgG1 Isotype Antibodies Against Cardiolipin. Journal of Immunology, 2002, 168, 2689-2694.	0.8	21
376	Selecting effective siRNAs based on guide RNA structure. Nature Protocols, 2006, 1, 1832-1839.	12.0	21
377	Drug-resistant tuberculosis in the European Union: Opportunities and challenges for control. Tuberculosis, 2010, 90, 182-187.	1.9	21
378	Emil von Behring: translational medicine at the dawn of immunology. Nature Reviews Immunology, 2017, 17, 341-343.	22.7	21

#	Article	IF	CITATIONS
379	Mycobacterium tuberculosis-Infected Hematopoietic Stem and Progenitor Cells Unable to Express Inducible Nitric Oxide Synthase Propagate Tuberculosis in Mice. Journal of Infectious Diseases, 2018, 217, 1667-1671.	4.0	21
380	Mycofactocin Is Associated with Ethanol Metabolism in Mycobacteria. MBio, 2019, 10, .	4.1	21
381	Toward novel vaccines against tuberculosis: current hopes and obstacles. Yale Journal of Biology and Medicine, 2010, 83, 209-15.	0.2	21
382	Secretion of different listeriolysin cognates by recombinant attenuated Salmonella typhimurium: superior efficacy of haemolytic over non-haemolytic constructs after oral vaccination. Microbes and Infection, 2000, 2, 1799-1806.	1.9	20
383	Deadly combination. Nature, 2008, 453, 295-296.	27.8	20
384	Dietary Pyridoxine Controls Efficacy of Vitamin B ₆ -Auxotrophic Tuberculosis Vaccine Bacillus Calmette-Guérin Δ <i>ureC</i> :: <i>hly</i> Δ <i>pdx1</i> in Mice. MBio, 2014, 5, e01262-14.	4.1	20
385	Lack of microbiota reduces innate responses and enhances adaptive immunity against <i>Listeria monocytogenes</i> infection. European Journal of Immunology, 2014, 44, 1710-1715.	2.9	20
386	Characterization of potential biomarkers of reactogenicity of licensed antiviral vaccines: randomized controlled clinical trials conducted by the BIOVACSAFE consortium. Scientific Reports, 2019, 9, 20362.	3.3	20
387	Vaccination strategies against intracellular microbes. FEMS Immunology and Medical Microbiology, 1993, 7, 95-103.	2.7	19
388	Frequencies of IFNÎ ³ - and IL-4-producing cells during Mycobacterium bovis BCG infection in two genetically susceptible mouse strains: role of αβ T cells and NK1.1 cells. Immunology Letters, 1995, 46, 15-19.	2.5	19
389	A critical role of T-cell receptor γ/δ cells in antibacterial protection in mice early in life. Hepatology, 2001, 33, 887-893.	7.3	19
390	Impaired maturation and function of dendritic cells by mycobacteria through IL-1β. European Journal of Immunology, 2006, 36, 1443-1452.	2.9	19
391	The Proteasome System in Infection: Impact of β5 and LMP7 on Composition, Maturation and Quantity of Active Proteasome Complexes. PLoS ONE, 2012, 7, e39827.	2.5	19
392	Ability of Cricetomys rats to detect Mycobacterium tuberculosis and discriminate it from other microorganisms. Tuberculosis, 2012, 92, 182-186.	1.9	19
393	Post-exposure vaccination with the vaccine candidate Bacillus Calmette–Guérin ΔureC::hly induces superior protection in a mouse model of subclinical tuberculosis. Microbes and Infection, 2016, 18, 364-368.	1.9	19
394	Changes in Transcript, Metabolite, and Antibody Reactivity During the Early Protective Immune Response in Humans to Mycobacterium tuberculosis Infection. Clinical Infectious Diseases, 2020, 71, 30-40.	5.8	19
395	Vaccination against tuberculosis and leprosy. Immunobiology, 1992, 184, 208-229.	1.9	18
396	Glucose-regulated stress proteins and antibacterial immunity. Trends in Microbiology, 2003, 11, 519-526.	7.7	18

#	Article	IF	CITATIONS
397	Granulysin-Expressing CD4+ T Cells as Candidate Immune Marker for Tuberculosis during Childhood and Adolescence. PLoS ONE, 2011, 6, e29367.	2.5	18
398	Molecular Signatures of Immunity and Immunogenicity in Infection and Vaccination. Frontiers in Immunology, 2017, 8, 1563.	4.8	18
399	Indole Propionic Acid: a Small Molecule Links between Gut Microbiota and Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	18
400	Cultivation of Mycobacterium bovis BCG in bioreactors. Journal of Biotechnology, 2002, 96, 259-270.	3.8	17
401	Role of interleukin-12 in determining differential kinetics of invariant natural killer T cells in response to differential burden of Listeria monocytogenes. Microbes and Infection, 2008, 10, 224-232.	1.9	17
402	α-Galactosylceramide Promotes Killing of <i>Listeria monocytogenes</i> within the Macrophage Phagosome through Invariant NKT-Cell Activation. Infection and Immunity, 2010, 78, 2667-2676.	2.2	17
403	Impact of inducible coâ€stimulatory molecule (ICOS) on Tâ€cell responses and protection against <i>Mycobacterium tuberculosis</i> infection. European Journal of Immunology, 2011, 41, 981-991.	2.9	17
404	A recombinant Bacille Calmette–Guérin construct expressing the Plasmodium falciparum circumsporozoite protein enhances dendritic cell activation and primes for circumsporozoite-specific memory cells in BALB/c mice. Vaccine, 2012, 30, 5578-5584.	3.8	17
405	The Henna pigment Lawsone activates the Aryl Hydrocarbon Receptor and impacts skin homeostasis. Scientific Reports, 2019, 9, 10878.	3.3	17
406	Gene expression signatures identify biologically and clinically distinct tuberculosis endotypes. European Respiratory Journal, 2022, 60, 2102263.	6.7	17
407	Tuberculosis vaccines—a new kid on the block. Nature Medicine, 2011, 17, 159-160.	30.7	16
408	NKT Cells Determine Titer and Subtype Profile of Virus-Specific IgG Antibodies during Herpes Simplex Virus Infection. Journal of Immunology, 2014, 192, 4294-4302.	0.8	16
409	<i>Mycobacterium tuberculosis</i> in the Proteomics Era. Microbiology Spectrum, 2014, 2, .	3.0	16
410	Innate-like Gene Expression of Lung-Resident Memory CD8 ⁺ T Cells during Experimental Human Influenza: A Clinical Study. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 826-841.	5.6	16
411	Antigen-specific CD8+ T cell responses in intestinal tissues during murine listeriosis. Microbes and Infection, 2004, 6, 8-16.	1.9	15
412	Reliable amplification method for bacterial RNA. Journal of Biotechnology, 2006, 126, 61-68.	3.8	15
413	Requirement of secondary lymphoid tissues for the induction of primary and secondary T cell responses against <i>Listeria monocytogenes</i> . European Journal of Immunology, 2008, 38, 127-138.	2.9	15
414	FX11 limits <i>Mycobacterium tuberculosis</i> growth and potentiates bactericidal activity of isoniazid through host-directed activity. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	15

#	Article	IF	CITATIONS
415	T Cells and Cytokines in Intracellular Bacterial Infections: Experiences with <i>Mycobacterium Bovis</i> BCG. Novartis Foundation Symposium, 1995, 195, 123-141.	1.1	15
416	NLRC5 promotes transcription of BTN3A1-3 genes and Vγ9VÎ′2 TÂcell-mediated killing. IScience, 2021, 24, 101900.	4.1	14
417	Sensing of mycobacterial arabinogalactan by galectinâ€9 exacerbates mycobacterial infection. EMBO Reports, 2021, 22, e51678.	4.5	14
418	Abscess formation inListeria monocytogenes-infectedγÎT cell deficient mouse mutants involvesαβT cells. Microbial Pathogenesis, 1997, 22, 123-128.	2.9	13
419	Anthrax lethal toxin suppresses chemokine production in human neutrophil NB-4 cells. Biochemical and Biophysical Research Communications, 2008, 374, 288-293.	2.1	13
420	Structural analysis reveals DNA binding properties of Rv2827c, a hypothetical protein from MycobacteriumÂtuberculosis. Journal of Structural and Functional Genomics, 2009, 10, 137-150.	1.2	13
421	Molecular signatures for vaccine development. Vaccine, 2015, 33, 5256-5261.	3.8	13
422	Localisation of human peripheral blood leukocytes after transfer to C.B-17 scid/scid mice. Immunology Letters, 1993, 38, 63-68.	2.5	12
423	Immune response against Mycobacterium tuberculosis: implications for vaccine development. Journal of Biotechnology, 2000, 83, 13-17.	3.8	12
424	Exacerbated colitis associated with elevated levels of activated CD4+ T cells in TCRα chain transgenic mice. Gastroenterology, 2004, 126, 170-181.	1.3	12
425	The Need for a Novel Generation of Vaccines. Immunobiology, 1999, 201, 272-282.	1.9	11
426	Immunization with gp96 from Listeria monocytogenes-Infected Mice Is Due to N-Formylated Listerial Peptides. Journal of Immunology, 2001, 167, 6480-6486.	0.8	11
427	Promiscuous Peptide Recognition of an Autoreactive CD8+ T-Cell Clone is Responsible for Autoimmune Intestinal Pathology. Journal of Autoimmunity, 2002, 18, 281-287.	6.5	11
428	Heterologous prime-boost regimen adenovector 35-circumsporozoite protein vaccine/recombinant Bacillus Calmette-Guérin expressing the Plasmodium falciparum circumsporozoite induces enhanced long-term memory immunity in BALB/c mice. Vaccine, 2012, 30, 4040-4045.	3.8	11
429	Neonatal Fc Receptor Regulation of Lung Immunoglobulin and CD103 ⁺ Dendritic Cells Confers Transient Susceptibility to Tuberculosis. Infection and Immunity, 2016, 84, 2914-2921.	2.2	11
430	Accelerating tuberculosis vaccine trials with diagnostic and prognostic biomarkers. Expert Review of Vaccines, 2017, 16, 845-853.	4.4	11
431	Human peripheral blood leukocytes transplanted on CB17 scid-scid mice are transferred to their offspring. European Journal of Immunology, 1992, 22, 1735-1740.	2.9	10
432	Antibacterial vaccines: impact of antigen handling and immune response. Journal of Molecular Medicine, 1997, 75, 360-363.	3.9	10

#	Article	IF	CITATIONS
433	Structural diversity in the six-fold redundant set of acyl-CoA carboxyltransferases inMycobacterium tuberculosis. FEBS Letters, 2006, 580, 6898-6902.	2.8	10
434	The potential of metabolic profiling for vaccine development. Seminars in Immunology, 2018, 39, 44-51.	5.6	10
435	TNF hampers intestinal tissue repair in colitis by restricting IL-22 bioavailability. Mucosal Immunology, 2022, 15, 698-716.	6.0	10
436	Immunity to infection. Current Opinion in Immunology, 1997, 9, 453-455.	5.5	9
437	Experimental Cerebral Malaria Develops Independently of Caspase Recruitment Domain-Containing Protein 9 Signaling. Infection and Immunity, 2012, 80, 1274-1279.	2.2	9
438	Development of Live Recombinant Vaccine Candidates Against Tuberculosis. Scandinavian Journal of Infectious Diseases, 2001, 33, 723-724.	1.5	8
439	Mycobacterial proteomes. Methods in Enzymology, 2002, 358, 242-256.	1.0	8
440	Regional IFNÂ expression is insufficient for efficacious control of food-borne bacterial pathogens at the gut epithelial barrier. International Immunology, 2007, 19, 1075-1081.	4.0	8
441	Reversible NK1.1 surface expression on invariant liver natural killer T cells during Listeria monocytogenes infection. Microbes and Infection, 2007, 9, 1511-1520.	1.9	8
442	EFIS lecture. Immune response to tuberculosis: How to control the most successful pathogen on earth. Immunology Letters, 2016, 175, 50-57.	2.5	8
443	Pulmonary immune responses to Mycobacterium tuberculosis in exposed individuals. PLoS ONE, 2017, 12, e0187882.	2.5	8
444	Highly affordable vaccines are critical for our continued efforts to reduce global childhood mortality. Human Vaccines and Immunotherapeutics, 2019, 15, 2660-2665.	3.3	8
445	Systematic Evaluation of Kinetics and Distribution of Muscle and Lymph Node Activation Measured by 18F-FDG- and 11C-PBR28-PET/CT Imaging, and Whole Blood and Muscle Transcriptomics After Immunization of Healthy Humans With Adjuvanted and Unadjuvanted Vaccines. Frontiers in Immunology, 2020, 11, 613496.	4.8	8
446	Weaker protection against tuberculosis in BCG-vaccinated male 129 S2 mice compared to females. Vaccine, 2021, 39, 7253-7264.	3.8	8
447	The CARD9 Polymorphisms rs4077515, rs10870077 and rs10781499 Are Uncoupled from Susceptibility to and Severity of Pulmonary Tuberculosis. PLoS ONE, 2016, 11, e0163662.	2.5	8
448	Interleukins, mycobacteria, and listeriae. Diagnostic Microbiology and Infectious Disease, 1990, 13, 429-433.	1.8	7
449	Effect on parasite eradication ofPneumocystis carinii-specific antibodies produced in the presence or absence of CD4+ α β T lymphocytes. European Journal of Immunology, 1999, 29, 2464-2475.	2.9	7
450	Killing vs suicide in antibacterial defence. Trends in Microbiology, 1999, 7, 59-61.	7.7	7

#	Article	IF	CITATIONS
451	Limited Mycobacterial Infection of the Liver as a Consequence of Its Microanatomical Structure Causing Restriction of Mycobacterial Growth to Professional Phagocytes. Infection and Immunity, 2001, 69, 7922-7926.	2.2	7
452	Introduction. Rational vaccine development against tuberculosis: "Those who don't remember the past are condemned to repeat it― Microbes and Infection, 2005, 7, 897-898.	1.9	7
453	Day of immunology: A far-reaching success. Immunology Letters, 2005, 100, 2-4.	2.5	7
454	Scant activation of CD8 T?cells by antigen loaded on heat shock protein. European Journal of Immunology, 2005, 35, 1046-1055.	2.9	7
455	Host–pathogen interactions. Current Opinion in Immunology, 2006, 18, 371-373.	5.5	7
456	Platelets Restrict the Oxidative Burst in Phagocytes and Facilitate Primary Progressive Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 730-744.	5.6	7
457	Pregnancy has a minimal impact on the acute transcriptional signature to vaccination. Npj Vaccines, 2020, 5, 29.	6.0	7
458	Role of Premycofactocin Synthase in Growth, Microaerophilic Adaptation, and Metabolism of Mycobacterium tuberculosis. MBio, 2021, 12, e0166521.	4.1	7
459	Striptease on glass: Validation of an improved stripping procedure for in situ microarrays. Journal of Biotechnology, 2007, 128, 1-13.	3.8	6
460	Tuberculosis and AIDS – a devilish liaison. Drug Discovery Today, 2007, 12, 891-893.	6.4	6
461	Prevalence and predictors of positive tuberculin skin test results in a research laboratory. Revista Da Sociedade Brasileira De Medicina Tropical, 2008, 41, 416-418.	0.9	6
462	Editorial: Th17 cells. Microbes and Infection, 2009, 11, 579-583.	1.9	6
463	APOPO's tuberculosis research agenda: achievements, challenges and prospects. Tanzania Health Research Bulletin, 2012, 14, 121-30.	0.5	6
464	High-throughput data analysis and data integration for vaccine trials. Vaccine, 2015, 33, 5249-5255.	3.8	6
465	Novel Method for Quantifying AhR-Ligand Binding Affinities Using Microscale Thermophoresis. Biosensors, 2021, 11, 60.	4.7	6
466	Isolation of RNA from mycobacteria grown under in vitro and in vivo conditions. FEMS Microbiology Letters, 2000, 186, 177-180.	1.8	6
467	Concurrent evaluation of cytokines improves the accuracy of antibodies against Mycobacterium tuberculosis antigens in the diagnosis of active tuberculosis. Tuberculosis, 2022, 133, 102169.	1.9	6
468	Hydrophobic interaction chromatography for the purification of cytolytic bacterial toxins. Journal of Chromatography A, 1994, 667, 131-139.	3.7	5

#	Article	IF	CITATIONS
469	Influence of mycobacterial virulence and culture condition on Î ³ δT cell activation. Microbial Pathogenesis, 1998, 24, 197-201.	2.9	5
470	Reductive methylation to improve crystallization of the putative oxidoreductase Rv0765c fromMycobacterium tuberculosis. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 507-511.	0.7	5
471	Rational design of novel antibacterial vaccines with an emphasis on tuberculosis. Scandinavian Journal of Infectious Diseases, 2008, 40, 595-600.	1.5	5
472	Diagnostic biomarkers are hidden in the infected host's epigenome. Expert Review of Molecular Diagnostics, 2013, 13, 625-637.	3.1	5
473	Efficacy Testing of H56 cDNA Tattoo Immunization against Tuberculosis in a Mouse Model. Frontiers in Immunology, 2017, 8, 1744.	4.8	5
474	Gene Set Enrichment Analysis Reveals Individual Variability in Host Responses in Tuberculosis Patients. Frontiers in Immunology, 2021, 12, 694680.	4.8	5
475	Video Endoscopy-Guided Intrabronchial Spray Inoculation of Mycobacterium bovis in Goats and Comparative Assessment of Lung Lesions With Various Imaging Methods. Frontiers in Veterinary Science, 2022, 9, 877322.	2.2	5
476	Hydrophobic interaction chromatography for the purification of a mycobacterial heat shock protein of relative molecular mass 60 000. Journal of Chromatography A, 1991, 587, 19-23.	3.7	4
477	Rapid electroelution of two-dimensionally separated protein mixtures: Its use inin vitro assays of T cell activities. Electrophoresis, 1993, 14, 902-908.	2.4	4
478	Rapid determination of $\hat{I}^{3}\hat{I}'$ T-cell stimulation by microfluorimetry. Immunology Letters, 1996, 53, 135-139.	2.5	4
479	Development of novel tuberculosis vaccines. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 1999, 322, 953-958.	0.8	4
480	Functionally active CD8ÂÂ+ TCRÂÂ intestinal intraepithelial lymphocytes in athymic nu/nu mice. International Immunology, 2004, 16, 111-117.	4.0	4
481	European Day of Immunology. Nature Immunology, 2005, 6, 741-741.	14.5	4
482	Restricted expression of Câ€ŧype lectinâ€like natural killer receptors by CD8 T cells in the murine small intestine. Immunology, 2008, 125, 38-47.	4.4	4
483	The Day of Immunology 2009. European Journal of Immunology, 2009, 39, 630-631.	2.9	4
484	Learning from natural infection for rational tuberculosis vaccine design:From basic science to translational research. Hum Vaccin, 2010, 6, 614-618.	2.4	4
485	TRANSVAC workshop on standardisation and harmonisation of analytical platforms for HIV, TB and malaria vaccines: †How can big data help?'. Vaccine, 2014, 32, 4365-4368.	3.8	4
486	Mycobacterium Genotypes in Pulmonary Tuberculosis Infections and Their Detection by Trained African Giant Pouched Rats. Current Microbiology, 2015, 70, 212-218.	2.2	4

#	Article	IF	CITATIONS
487	TRANSVAC research infrastructure – Results and lessons learned from the European network of vaccine research and development. Vaccine, 2015, 33, 5481-5487.	3.8	4
488	Immunopathology of mycobacterial diseases. Seminars in Immunopathology, 2016, 38, 135-138.	6.1	4
489	Host Defenses to Intracellular Bacteria. , 2019, , 375-389.e1.		4
490	The Tuberculosis Vaccine Development Pipeline: Present and Future Priorities and Challenges for Research and Innovation. , 2021, , 395-405.		4
491	Interleukin-4 Production in Response to Infection with Intracellular Bacteria. Advances in Experimental Medicine and Biology, 1998, 452, 75-83.	1.6	4
492	The Unique Role of Heat Shock Proteins in Infections. , 2020, , 27-51.		4
493	Replication-Deficient Lymphocytic Choriomeningitis Virus-Vectored Vaccine Candidate for the Induction of T Cell Immunity against Mycobacterium tuberculosis. International Journal of Molecular Sciences, 2022, 23, 2700.	4.1	4
494	Impact of host genetic background on Bacillus Calmette-Guérin infection in naturally susceptible mice. Immunology Letters, 1995, 48, 153-156.	2.5	3
495	Introduction: The immune response to infectious agents. Methods in Microbiology, 2002, , 1-20.	0.8	3
496	The Immune Response to Infectious Agents. Methods in Microbiology, 2010, 37, 1-20.	0.8	3
497	Acquired Immunity against Bacteria. , 2014, , 207-221.		3
498	Editorial: Reassessing Twenty Years of Vaccine Development against Tuberculosis. Frontiers in Immunology, 2018, 9, 180.	4.8	3
499	The Evolutionary Origins of the Adaptive Immune System of Jawed Vertebrates. , 0, , 41-55.		3
500	Editorial overview Novel insights and new models in a time of rapid technological change. Current Opinion in Immunology, 1994, 6, 515-517.	5.5	2
501	Activation of natural killer cells by heat-killed Listeria monocytogenes requires additional signals from lymphoid cells. Immunology Letters, 1996, 50, 81-85.	2.5	2
502	CD8αα T cells in lesions ofListeria monocytogenes-infected β2m-deficient mice. Microbial Pathogenesis, 1997, 23, 101-106.	2.9	2
503	Rational Design of Antituberculosis Vaccines: Impact of Antigen Display and Vaccine Localization. Biologicals, 1997, 25, 169-173.	1.4	2
504	Contribution of MHC class I-dependent immune mechanisms induced by attenuated recombinant Salmonella typhimurium secreting superoxide dismutase to protection against murine listeriosis. Vaccine, 2001, 19, 3269-3272.	3.8	2

#	Article	IF	CITATIONS
505	Introduction: from genome to function $\hat{a} \in$ "monitoring global responses in infectious diseases by interrogating the transcriptome and proteome. Microbes and Infection, 2001, 3, 811-812.	1.9	2
506	Towards simple artificial infectious systems. Trends in Molecular Medicine, 2003, 9, 479-482.	6.7	2
507	Autistic effector T cells in mice with a point mutation in the LAT adaptor fail to respond to Listeria monocytogenes infection. International Immunology, 2005, 17, 951-957.	4.0	2
508	Two-Dimensional Gel Electrophoresis-Based Proteomics of Mycobacteria. Methods in Molecular Biology, 2009, 465, 111-142.	0.9	2
509	The Else Kröner-Fresenius Immunology Award. Nature Immunology, 2012, 13, 421-422.	14.5	2
510	Acquired Immunity to Intracellular Protozoa. , 2014, , 301-311.		2
511	Immune Evasion by Parasites. , 2014, , 453-469.		2
512	Big Data in Vaccinology: Introduction and section summaries. Vaccine, 2015, 33, 5237-5240.	3.8	2
513	Gene Expression Signatures Identify Biologically and Clinically Distinct Tuberculosis Endotypes. SSRN Electronic Journal, 0, , .	0.4	2
514	T Cell Subsets and Defense against Bacteria and Viruses. , 1994, , 237-267.		2
515	Host Defense (Antimicrobial) Peptides and Proteins. , 0, , 57-67.		2
516	Meeting the Challenge of Vaccine Design To Control HIV and Other Difficult Viruses. , 0, , 559-570.		2
517	Malaria: Clinical and Epidemiological Aspects. , 0, , 633-641.		2
518	Constitutive biological activity of thymus-independent TCR-αâ^'β+ intestinal intraepithelial lymphocytes in TCR-αâ^'â^' gene disruption mice. Immunology Letters, 1996, 54, 53-57.	2.5	1
519	US restrictions limit anthrax networking. Nature, 2004, 431, 897-897.	27.8	1
520	Natural regulatory T cells and infection. Current Opinion in Organ Transplantation, 2005, 10, 320-325.	1.6	1
521	Bringing Immunology to the Classroom. Immunity, 2006, 24, 349.	14.3	1
522	Protein identification and tracking in two-dimensional electrophoretic gels by minimal protein identifiers. , 0, , 97-120.		1

#	Article	IF	CITATIONS
523	Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of Rv2827c fromMycobacterium tuberculosis. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 753-756.	0.7	1
524	RNA Silencing in the Struggle against Disease. Annals of the New York Academy of Sciences, 2006, 1082, 44-46.	3.8	1
525	News and EFIS. European Journal of Immunology, 2008, 38, 2633-2635.	2.9	1
526	Editorial by the Editor-in-Chief of Microbes and Infection. Microbes and Infection, 2008, 10, 2.	1.9	1
527	How it all began: Microbes and Infection 120 years later. Microbes and Infection, 2008, 10, 935-941.	1.9	1
528	Different diagnostic criteria for latent tuberculosis are applied in laboratory-based research papers. Journal of Infection, 2008, 56, 159-161.	3.3	1
529	Immune responses to intracellular bacteria. , 2008, , 389-409.		1
530	Microbes and Infection: Past, present and future. Microbes and Infection, 2010, 12, 1-2.	1.9	1
531	Immunogenicity and Protective Efficacy of Prime-Boost Regimens with Recombinant ΔureC hly ⁺ Mycobacterium bovis BCG and Modified Vaccinia Virus Ankara Expressing M. tuberculosis Antigen 85A against Murine Tuberculosis. Infection and Immunity, 2011, 79, 2133-2133.	2.2	1
532	Immunogenetics of Host Response to Parasites in Humans. , 2014, , 483-490.		1
533	Introduction. Seminars in Immunology, 2014, 26, 429-430.	5.6	1
534	Combined efforts in immunology and vaccinology will lead to effective vaccines against <scp>HIV</scp> , tuberculosis and malaria. Journal of Internal Medicine, 2014, 275, 442-443.	6.0	1
535	Bacterial Strategies for Survival in the Host. , 2014, , 425-440.		1
536	Innate Immunity against Bacteria. , 2014, , 209-223.		1
537	Overview of Parasitic Pathogens. , 0, , 143-153.		1
538	Natural Killer Cell Response against Viruses. , 0, , 197-207.		1
539	Acquired Immunity: Acute Bacterial Infections. , 0, , 269-277.		1

#	Article	IF	CITATIONS
541	Reactive Oxygen and Reactive Nitrogen Intermediates in the Immune System. , 0, , 69-84.		1
542	Immune Defense at Mucosal Surfaces. , 0, , 97-107.		1
543	Regulation of Antimicrobial Immunity. , 0, , 109-120.		1
544	Identifying Activated T Cells in Reconstituted RAG Deficient Mice Using Retrovirally Transduced Pax5 Deficient Pro-B Cells. PLoS ONE, 2009, 4, e5115.	2.5	1
545	Host defenses to intracellular bacteria. , 2013, , 324-337.		1
546	Monoclonal T Cells and T-Cell Hybridomas with Antibacterial Activity. , 1985, , 233-267.		1
547	Acquired Immunity against Virus Infections. , 0, , 237-254.		1
548	PCR-based quantification of Pneumocystis carinii in in vitro systems. Microbes and Infection, 2000, 2, 737-743.	1.9	0
549	Listeriolysin – a useful cytolysin. Trends in Microbiology, 2001, 9, 162.	7.7	0
550	Development of Live Recombinant Vaccine Candidates Against Tuberculosis. Scandinavian Journal of Infectious Diseases, 2001, 33, 77-78.	1.5	0
551	New tuberculosis vaccines approaching clinical trial – An overview. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 113-119.	0.5	0
552	CFP10 discriminates between nonacetylated and acetylated ESAT-6 ofMycobacterium tuberculosis by differential interaction. , 0, , 141-152.		0
553	Web-accessible proteome databases for microbial research. , 0, , 63-74.		0
554	Editorial. International Journal of Medical Microbiology, 2008, 298, 1-2.	3.6	0
555	Knighting immunology. Nature Immunology, 2009, 10, 1037-1037.	14.5	0
556	Current & Emerging Diagnostics, Therapeutics & Vaccines for Tuberculosis. , 2011, , .		0
557	Innate Immunity to Parasitic Infections. , 2014, , 225-236.		0
558	Targeting Components in Vector Saliva. , 2014, , 599-608.		0

#	Article	IF	CITATIONS
559	Memory and Infection. , 2014, , 121-130.		0
560	Pathology and Pathogenesis of Bacterial Infections. , 2014, , 325-336.		0
561	Innate Immunity to Viruses. , 0, , 183-196.		Ο
562	Pathogenesis of Helminth Infections. , 2014, , 347-359.		0
563	Helicobacter pylori: the Role of the Immune Response in Pathogenesis. , 2014, , 337-346.		0
564	Theileria-Induced Leukocyte Transformation: an Example of Oncogene Addiction?. , 2014, , 537-546.		0
565	Acquired Immunity to Helminths. , 2014, , 313-323.		0
566	Viruses, Autoimmunity, and Cancer. , 2014, , 509-520.		0
567	Reply to Crawford. Journal of Infectious Diseases, 2015, 212, 1173-1174.	4.0	0
568	Tuberculosis Vaccines. , 2017, , 1-12.		0
569	OC 8405â€IDENTIFICATION OF AN MTB-SPECIFIC SOLUBLE HOST SIGNATURE FOR RISK OF DEVELOPMENT OF ACTIVE TB IN HIV-POSITIVE MTB-EXPOSED CONTACTS. BMJ Global Health, 2019, 4, A5.1-A5.	4.7	0
570	DNA Delivery with Attenuated Intracellular Bacteria. , 2003, , 263-286.		0
571	Immunologische Grundlagen der Infektabwehr. , 2008, , 39-51.		0
572	Infektabwehr. Springer-Lehrbuch, 2009, , 108-117.	0.0	0
573	Komplement. Springer-Lehrbuch, 2009, , 63-67.	0.0	0
574	Antikörper und ihre Antigene. Springer-Lehrbuch, 2009, , 48-62.	0.0	0
575	Immunpathologie. Springer-Lehrbuch, 2009, , 99-107.	0.0	Ο
576	Haupt- Histokompatibilitä- Komplex. Springer-Lehrbuch, 2009, , 74-75.	0.0	0

#	Article	IF	CITATIONS
577	MononukleÃæ Phagozyten und antigenprÃsentierende Zellen. Springer-Lehrbuch, 2009, , 91-98.	0.0	0
578	Antigen-Antikörper-Reaktion: Grundlagen serologischer Methoden. Springer-Lehrbuch, 2009, , 68-73.	0.0	0
579	Organe des Immunsystems. Springer-Lehrbuch, 2009, , 44-47.	0.0	Ο
580	State of the art in vaccine development against TB. , 2012, , 59-71.		0
581	The Ontogeny of the Cells of the Innate and the Adaptive Immune System. , 0, , 21-39.		Ο
582	Immune Intervention in Malaria. , 0, , 587-597.		0
583	Pathology and Pathogenesis of Bacterial Infections. , 0, , 281-292.		Ο
584	Pathology and Pathogenesis of Malaria. , 0, , 361-381.		0
585	Role of Innate Immunity in Bacterial Infection. , 0, , 433-454.		Ο
586	Autoimmunity as a Consequence of Infection. , 0, , 267-280.		0
587	Bicentennial of the first vaccination by Edward Jenner. , 1996, , vii-viii.		Ο
588	Suppression of Immune Responses to Protozoan Parasites. , 0, , 441-451.		0
589	Prionoses and the Immune System. , 0, , 173-181.		Ο
590	The Immune Response to Infection: Introduction. , 0, , 1-4.		0
591	Acquired Immunity: Fungal Infections. , 0, , 289-299.		Ο
592	Overview of Fungal Pathogens. , 0, , 165-172.		0
593	Acquired Immunity: Chronic Bacterial Infections. , 0, , 279-287.		0
594	AIDS Vaccines: the Unfolding Story. , 0, , 609-621.		0

#	Article	IF	CITATIONS
595	Immune Intervention Strategies against Tuberculosis. , 0, , 571-586.		Ο
596	Mycobacterium tuberculosis in the Proteomics Era. , 0, , 239-260.		0
597	BCG and Novel Tuberculosis Vaccine Candidates in the Context of Immunodeficiencies. , 2020, , 51-62.		Ο
598	Antikörper und ihre Antigene. , 2020, , 69-84.		0
599	BCG and Novel Tuberculosis Vaccine Candidates in the Context of Immunodeficiencies. , 2020, , 1-12.		0