
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2330310/publications.pdf Version: 2024-02-01

Ζιμε Ρλο

#	Article	IF	CITATIONS
1	Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582, 289-293.	27.8	3,133
2	Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 2020, 368, 779-782.	12.6	1,228
3	Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020, 368, 1331-1335.	12.6	1,135
4	The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13190-13195.	7.1	879
5	Crystal Structure of Mitochondrial Respiratory Membrane Protein Complex II. Cell, 2005, 121, 1043-1057.	28.9	689
6	Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase. Cell, 2020, 182, 417-428.e13.	28.9	672
7	Design of Wide-Spectrum Inhibitors Targeting Coronavirus Main Proteases. PLoS Biology, 2005, 3, e324.	5.6	547
8	Crystal structure of an avian influenza polymerase PAN reveals an endonuclease active site. Nature, 2009, 458, 909-913.	27.8	437
9	Structural basis and functional analysis of the SARS coronavirus nsp14–nsp10 complex. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9436-9441.	7.1	431
10	Structures of Two Coronavirus Main Proteases: Implications for Substrate Binding and Antiviral Drug Design. Journal of Virology, 2008, 82, 2515-2527.	3.4	388
11	Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science, 2020, 369, 1505-1509.	12.6	358
12	A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nature Structural and Molecular Biology, 2012, 19, 424-429.	8.2	347
13	Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature Structural and Molecular Biology, 2020, 27, 529-532.	8.2	339
14	Structural biology of SARS-CoV-2 and implications for therapeutic development. Nature Reviews Microbiology, 2021, 19, 685-700.	28.6	259
15	Delicate structural coordination of the Severe Acute Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Research, 2019, 47, 6538-6550.	14.5	256
16	Insights into SARS-CoV transcription and replication from the structure of the nsp7–nsp8 hexadecamer. Nature Structural and Molecular Biology, 2005, 12, 980-986.	8.2	255
17	Architecture of African swine fever virus and implications for viral assembly. Science, 2019, 366, 640-644.	12.6	252
18	Production of Authentic SARS-CoV Mpro with Enhanced Activity: Application as a Novel Tag-cleavage Endopeptidase for Protein Overproduction. Journal of Molecular Biology, 2007, 366, 965-975.	4.2	221

#	Article	IF	CITATIONS
19	Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis. Cell, 2021, 184, 184-193.e10.	28.9	201
20	Current progress in antiviral strategies. Trends in Pharmacological Sciences, 2014, 35, 86-102.	8.7	199
21	Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target. Cell, 2019, 176, 636-648.e13.	28.9	172
22	Hepatitis A virus and the origins of picornaviruses. Nature, 2015, 517, 85-88.	27.8	158
23	Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nature Communications, 2021, 12, 3061.	12.8	149
24	Picornavirus uncoating intermediate captured in atomic detail. Nature Communications, 2013, 4, 1929.	12.8	148
25	Architecture of a SARS-CoV-2 mini replication and transcription complex. Nature Communications, 2020, 11, 5874.	12.8	147
26	The newly emerged SARS-Like coronavirus HCoV-EMC also has an "Achilles' heel― current effective inhibitor targeting a 3C-like protease. Protein and Cell, 2013, 4, 248-250.	11.0	146
27	Drug Design Targeting the Main Protease, the Achilles Heel of Coronaviruses. Current Pharmaceutical Design, 2006, 12, 4573-4590.	1.9	145
28	Structures of human mitofusin 1 provide insight into mitochondrial tethering. Journal of Cell Biology, 2016, 215, 621-629.	5.2	141
29	Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332. Protein and Cell, 2022, 13, 689-693.	11.0	136
30	Near-atomic structure of Japanese encephalitis virus reveals critical determinants of virulence and stability. Nature Communications, 2017, 8, 14.	12.8	117
31	An electron transfer path connects subunits of a mycobacterial respiratory supercomplex. Science, 2018, 362, .	12.6	117
32	Coupling of N7-methyltransferase and 3′-5′ exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Cell, 2021, 184, 3474-3485.e11.	28.9	111
33	Structural and Biochemical Characterization of Endoribonuclease Nsp15 Encoded by Middle East Respiratory Syndrome Coronavirus. Journal of Virology, 2018, 92, .	3.4	97
34	Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71. Protein and Cell, 2014, 5, 692-703.	11.0	95
35	High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors. Protein and Cell, 2021, 12, 877-888.	11.0	95
36	Cryo-EM structure of a herpesvirus capsid at 3.1 Ã Science, 2018, 360, .	12.6	93

#	Article	IF	CITATIONS
37	More-powerful virus inhibitors from structure-based analysis of HEV71 capsid-binding molecules. Nature Structural and Molecular Biology, 2014, 21, 282-288.	8.2	88
38	Structural basis for enzymatic photocatalysis in chlorophyll biosynthesis. Nature, 2019, 574, 722-725.	27.8	88
39	Crystal structure of a membrane-bound O-acyltransferase. Nature, 2018, 562, 286-290.	27.8	87
40	Oncoprotein <scp>CIP</scp> 2A is stabilized via interaction with tumor suppressor <scp>PP</scp> 2A/B56. EMBO Reports, 2017, 18, 437-450.	4.5	84
41	Structure of the Main Protease from a Global Infectious Human Coronavirus, HCoV-HKU1. Journal of Virology, 2008, 82, 8647-8655.	3.4	83
42	Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions. Nature Communications, 2018, 9, 1552.	12.8	83
43	Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol. Science, 2020, 368, 1211-1219.	12.6	82
44	Structural basis for GTP hydrolysis and conformational change of MFN1 in mediating membrane fusion. Nature Structural and Molecular Biology, 2018, 25, 233-243.	8.2	78
45	Adeno-associated virus 2 bound to its cellular receptor AAVR. Nature Microbiology, 2019, 4, 675-682.	13.3	76
46	Molecular Characterization of a Class I P450 Electron Transfer System from Novosphingobium aromaticivorans DSM12444. Journal of Biological Chemistry, 2010, 285, 27372-27384.	3.4	74
47	Cyclophilin A Associates with Enterovirus-71 Virus Capsid and Plays an Essential Role in Viral Infection as an Uncoating Regulator. PLoS Pathogens, 2014, 10, e1004422.	4.7	74
48	Unexpected mode of engagement between enterovirus 71 and its receptor SCARB2. Nature Microbiology, 2019, 4, 414-419.	13.3	73
49	Structural basis of Zika virus helicase in recognizing its substrates. Protein and Cell, 2016, 7, 562-570.	11.0	72
50	Crystal structure of a PP2A B56-BubR1 complex and its implications for PP2A substrate recruitment and localization. Protein and Cell, 2016, 7, 516-526.	11.0	70
51	Protective humoral responses to severe acute respiratory syndrome-associated coronavirus: implications for the design of an effective protein-based vaccine. Journal of General Virology, 2004, 85, 3109-3113.	2.9	69
52	A SARS-CoV-2 neutralizing antibody with extensive Spike binding coverage and modified for optimal therapeutic outcomes. Nature Communications, 2021, 12, 2623.	12.8	64
53	Structural basis for replicase polyprotein cleavage and substrate specificity of main protease from SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117142119.	7.1	64
54	Structures of Coxsackievirus A16 Capsids with Native Antigenicity: Implications for Particle Expansion, Receptor Binding, and Immunogenicity. Journal of Virology, 2015, 89, 10500-10511.	3.4	58

#	Article	IF	CITATIONS
55	Structural basis for signal recognition and transduction by platelet-activating-factor receptor. Nature Structural and Molecular Biology, 2018, 25, 488-495.	8.2	58
56	Architecture of the herpesvirus genome-packaging complex and implications for DNA translocation. Protein and Cell, 2020, 11, 339-351.	11.0	53
57	Structures of Coxsackievirus A10 unveil the molecular mechanisms of receptor binding and viral uncoating. Nature Communications, 2018, 9, 4985.	12.8	52
58	Divergent engagements between adeno-associated viruses with their cellular receptor AAVR. Nature Communications, 2019, 10, 3760.	12.8	52
59	Prediction of host - pathogen protein interactions between Mycobacterium tuberculosis and Homo sapiens using sequence motifs. BMC Bioinformatics, 2015, 16, 100.	2.6	51
60	Crystal structure and mutagenesis analysis of chitinase CrChi1 from the nematophagous fungus Clonostachys rosea in complex with the inhibitor caffeine. Microbiology (United Kingdom), 2010, 156, 3566-3574.	1.8	50
61	Double Lock of a Human Neutralizing and Protective Monoclonal Antibody Targeting the Yellow Fever Virus Envelope. Cell Reports, 2019, 26, 438-446.e5.	6.4	49
62	Structures of Omicron spike complexes and implications for neutralizing antibody development. Cell Reports, 2022, 39, 110770.	6.4	47
63	Structures of the yeast dynamin-like GTPase Sey1p provide insight into homotypic ER fusion. Journal of Cell Biology, 2015, 210, 961-972.	5.2	46
64	Molecular architecture of the ErbB2 extracellular domain homodimer. Oncotarget, 2015, 6, 1695-1706.	1.8	44
65	Six-helix bundle assembly and characterization of heptad repeat regions from the F protein of Newcastle disease virus. Journal of General Virology, 2002, 83, 623-629.	2.9	43
66	Structure of Ljungan virus provides insight into genome packaging of this picornavirus. Nature Communications, 2015, 6, 8316.	12.8	43
67	A Unique Human Norovirus Lineage with a Distinct HBGA Binding Interface. PLoS Pathogens, 2015, 11, e1005025.	4.7	42
68	Potent neutralization of hepatitis A virus reveals a receptor mimic mechanism and the receptor recognition site. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 770-775.	7.1	42
69	Structural basis for neutralization of Japanese encephalitis virus by two potent therapeutic antibodies. Nature Microbiology, 2018, 3, 287-294.	13.3	42
70	Structural analysis of a trimeric assembly of the mitochondrial dynamin-like GTPase Mgm1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4061-4070.	7.1	42
71	Structure of severe fever with thrombocytopenia syndrome virus L protein elucidates the mechanisms of viral transcription initiation. Nature Microbiology, 2020, 5, 864-871.	13.3	38
72	Structures of fungal and plant acetohydroxyacid synthases. Nature, 2020, 586, 317-321.	27.8	37

#	Article	IF	CITATIONS
73	Suramin inhibits EV71 infection. Antiviral Research, 2014, 103, 1-6.	4.1	36
74	Peptidyl Aldehyde NK-1.8k Suppresses Enterovirus 71 and Enterovirus 68 Infection by Targeting Protease 3C. Antimicrobial Agents and Chemotherapy, 2015, 59, 2636-2646.	3.2	36
75	Structure of human Aichi virus and implications for receptor binding. Nature Microbiology, 2016, 1, 16150.	13.3	36
76	Mass spectrometry reveals potential of β-lactams as SARS-CoV-2 M ^{pro} inhibitors. Chemical Communications, 2021, 57, 1430-1433.	4.1	35
77	Structures of the portal vertex reveal essential protein-protein interactions for Herpesvirus assembly and maturation. Protein and Cell, 2020, 11, 366-373.	11.0	33
78	Cryo-EM structure of <i>Mycobacterium smegmatis</i> DyP-loaded encapsulin. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	32
79	Structure of the herpes simplex virus type 2 C-capsid with capsid-vertex-specific component. Nature Communications, 2018, 9, 3668.	12.8	31
80	Structural basis for SARS-CoV-2 neutralizing antibodies with novel binding epitopes. PLoS Biology, 2021, 19, e3001209.	5.6	31
81	Seneca Valley virus attachment and uncoating mediated by its receptor anthrax toxin receptor 1. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13087-13092.	7.1	30
82	Nanometer-resolution in situ structure of the SARS-CoV-2 postfusion spike protein. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
83	Structural View and Substrate Specificity of Papain-like Protease from Avian Infectious Bronchitis Virus. Journal of Biological Chemistry, 2015, 290, 7160-7168.	3.4	28
84	Hand-foot-and-mouth disease virus receptor KREMEN1 binds the canyon of Coxsackie Virus A10. Nature Communications, 2020, 11, 38.	12.8	28
85	Crystal Structure of African Swine Fever Virus pS273R Protease and Implications for Inhibitor Design. Journal of Virology, 2020, 94, .	3.4	28
86	Structural Insight into Nucleoprotein Conformation Change Chaperoned by VP35 Peptide in Marburg Virus. Journal of Virology, 2017, 91, .	3.4	27
87	Structural Basis for the Inhibition of Mycobacterial MmpL3 by NITD-349 and SPIRO. Journal of Molecular Biology, 2020, 432, 4426-4434.	4.2	27
88	Crystal structures of NAC domains of human nascent polypeptide-associated complex (NAC) and its αNAC subunit. Protein and Cell, 2010, 1, 406-416.	11.0	26
89	Structure of the nisin leader peptidase NisP revealing a C-terminal autocleavage activity. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1499-1505.	2.5	26
90	Neutralization Mechanisms of Two Highly Potent Antibodies against Human Enterovirus 71. MBio, 2018, 9, .	4.1	26

#	Article	IF	CITATIONS
91	Structural insights into G domain dimerization and pathogenic mutation of OPA1. Journal of Cell Biology, 2020, 219, .	5.2	25
92	Cryo-EM structure of mycobacterial cytochrome bd reveals two oxygen access channels. Nature Communications, 2021, 12, 4621.	12.8	24
93	Double lock of a potent human therapeutic monoclonal antibody against SARS-CoV-2. National Science Review, 2021, 8, nwaa297.	9.5	24
94	Structure of Mycobacterium tuberculosis cytochrome bcc in complex with Q203 and TB47, two anti-TB drug candidates. ELife, 2021, 10, .	6.0	22
95	Cryo-EM structure of trimeric Mycobacterium smegmatis succinate dehydrogenase with a membrane-anchor SdhF. Nature Communications, 2020, 11, 4245.	12.8	20
96	Structures of <i>Mycobacterium tuberculosis</i> Penicillin-Binding Protein 3 in Complex with Five <i>β</i> -Lactam Antibiotics Reveal Mechanism of Inactivation. Molecular Pharmacology, 2020, 97, 287-294.	2.3	20
97	Structure Elucidation of Coxsackievirus A16 in Complex with GPP3 Informs a Systematic Review of Highly Potent Capsid Binders to Enteroviruses. PLoS Pathogens, 2015, 11, e1005165.	4.7	20
98	Crystal structure of a tankyrase 1–telomere repeat factor 1 complex. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 320-327.	0.8	19
99	Structural insight into dephosphorylation by trehalose 6â€phosphate phosphatase (OtsB2) from <i>Mycobacterium tuberculosis</i> . FASEB Journal, 2016, 30, 3989-3996.	0.5	19
100	Structural basis of trehalose recycling by the ABC transporter LpqY-SugABC. Science Advances, 2020, 6, .	10.3	19
101	The binding of a monoclonal antibody to the apical region of SCARB2 blocks EV71 infection. Protein and Cell, 2017, 8, 590-600.	11.0	18
102	Hepatitis A Virus Capsid Structure. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a031807.	6.2	18
103	Structures of Echovirus 30 in complex with its receptors inform a rational prediction for enterovirus receptor usage. Nature Communications, 2020, 11, 4421.	12.8	18
104	Architecture of the mycobacterial succinate dehydrogenase with a membrane-embedded Rieske FeS cluster. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
105	Structural basis for recognition and regulation of arenavirus polymerase L by Z protein. Nature Communications, 2021, 12, 4134.	12.8	17
106	New nsp8 isoform suggests mechanism for tuning viral RNA synthesis. Protein and Cell, 2010, 1, 198-204.	11.0	16
107	Structural Adaptations of Norovirus GII.17/13/21 Lineage through Two Distinct Evolutionary Paths. Journal of Virology, 2019, 93, .	3.4	16
108	Dual activities of ACC synthase: Novel clues regarding the molecular evolution of <i>ACS</i> genes. Science Advances, 2021, 7, eabg8752.	10.3	14

#	Article	IF	CITATIONS
109	Serotype specific epitopes identified by neutralizing antibodies underpin immunogenic differences in Enterovirus B. Nature Communications, 2020, 11, 4419.	12.8	13
110	Cryo-EM snapshots of mycobacterial arabinosyltransferase complex EmbB2-AcpM2. Protein and Cell, 2020, 11, 505-517.	11.0	13
111	Structural basis for neutralization of hepatitis A virus informs a rational design of highly potent inhibitors. PLoS Biology, 2019, 17, e3000229.	5.6	12
112	Design, Synthesis, and Evaluation of Novel Enterovirus 71 Inhibitors as Therapeutic Drug Leads for the Treatment of Human Hand, Foot, and Mouth Disease. Journal of Medicinal Chemistry, 2020, 63, 1233-1244.	6.4	12
113	Remdesivir overcomes the S861 roadblock in SARS-CoV-2 polymerase elongation complex. Cell Reports, 2021, 37, 109882.	6.4	12
114	Identification of serotonin 2A receptor as a novel HCV entry factor by a chemical biology strategy. Protein and Cell, 2019, 10, 178-195.	11.0	11
115	Structural Insight into African Swine Fever Virus dUTPase Reveals a Novel Folding Pattern in the dUTPase Family. Journal of Virology, 2020, 94, .	3.4	10
116	Mechanism of Dephosphorylation of Glucosyl-3-phosphoglycerate by a Histidine Phosphatase. Journal of Biological Chemistry, 2014, 289, 21242-21251.	3.4	9
117	Crystal structure of the African swine fever virus structural protein p35 reveals its role for core shell assembly. Protein and Cell, 2020, 11, 600-605.	11.0	9
118	Structures of Foot-and-mouth Disease Virus with neutralizing antibodies derived from recovered natural host reveal a mechanism for cross-serotype neutralization. PLoS Pathogens, 2021, 17, e1009507.	4.7	9
119	The Life of SARS-CoV-2 Inside Cells: Replication–Transcription Complex Assembly and Function. Annual Review of Biochemistry, 2022, 91, 381-401.	11.1	9
120	Structural views of quinone oxidoreductase from <i>MycobacteriumÂtuberculosis</i> reveal large conformational changes induced by the coâ€factor. FEBS Journal, 2015, 282, 2697-2707.	4.7	8
121	Structural characterization of the HCoV-229E fusion core. Biochemical and Biophysical Research Communications, 2018, 497, 705-712.	2.1	8
122	Structure of African swine fever virus p15 reveals its dual role for membrane-association and DNA binding. Protein and Cell, 2020, 11, 606-612.	11.0	8
123	Homotypic dimerization of a maltose kinase for molecular scaffolding. Scientific Reports, 2014, 4, 6418.	3.3	7
124	Crystal structure of the apurinic/apyrimidinic endonuclease IV from Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 2018, 498, 111-118.	2.1	7
125	Structural basis for the broad substrate specificity of two acyl-CoA dehydrogenases FadE5 from mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16324-16332.	7.1	7
126	Crystal structure of l -glutamate N -acetyltransferase ArgA from Mycobacterium tuberculosis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1800-1807.	2.3	6

#	Article	IF	CITATIONS
127	Discovery of the first macrolide antibiotic binding protein in Mycobacterium tuberculosis: a new antibiotic resistance drug target. Protein and Cell, 2018, 9, 971-975.	11.0	6
128	Structural Insight into the Activation of PknI Kinase from M.Âtuberculosis via Dimerization of the Extracellular Sensor Domain. Structure, 2017, 25, 1286-1294.e4.	3.3	5
129	Identification of Interferon Receptor IFNAR2 As a Novel HCV Entry Factor by Using Chemical Probes. ACS Chemical Biology, 2020, 15, 1232-1241.	3.4	5
130	History of protein crystallography in China. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1035-1042.	4.0	4
131	Structural properties of the peroxiredoxin AhpC2 from the hyperthermophilic eubacterium Aquifex aeolicus. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2797-2805.	2.4	4
132	The crystal structure of the phosphotriesterase from M.Âtuberculosis, another member of phosphotriesterase-like lactonase family. Biochemical and Biophysical Research Communications, 2019, 510, 224-229.	2.1	4
133	Purification and characterization of the extracellular region of human receptor tyrosine kinase like orphan receptor 2 (ROR2). Protein Expression and Purification, 2019, 158, 74-80.	1.3	4
134	Antibody engineering improves neutralization activity against K417 spike mutant SARS-CoV-2 variants. Cell and Bioscience, 2022, 12, 63.	4.8	4
135	Studies on Inhibition of Proliferation of Enterovirus-71 by Compound YZ-LY-0. International Journal of Biological Sciences, 2015, 11, 1337-1347.	6.4	3
136	Crystallization and preliminary X-ray diffraction analysis of FKBP12 complexed with a new neurotrophic ligand*. Progress in Natural Science: Materials International, 2003, 13, 765-767.	4.4	2
137	High-level expression and secondary structure analysis of the bovine mature prion protein. Science Bulletin, 2000, 45, 1312-1315.	1.7	1
138	Crystallization and preliminary X-ray crystallographic analysis of yeast prion protein Ure2p with shortened N-terminal. Science Bulletin, 2001, 46, 1012-1014.	1.7	1
139	Phylogeny reconstruction based on protein phylogenetic profiles of organisms*. Progress in Natural Science: Materials International, 2003, 13, 109-113.	4.4	1
140	A preliminary study on functional domains of small heat shock protein Hsp16.3 *. Progress in Natural Science: Materials International, 2004, 14, 21-25.	4.4	1
141	Opening Up the Group II Chaperonins. Structure, 2010, 18, 1221-1222.	3.3	1
142	Crystal structure and biochemical study on argininosuccinate lyase from Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 2019, 510, 116-121.	2.1	1
143	YjjX: From Structure "Tu―Function. Structure, 2005, 13, 1401-1402.	3.3	0
144	Structural analysis of molybdopterin synthases from two mycobacterial pathogens. Biochemical and Biophysical Research Communications, 2019, 511, 21-27.	2.1	0

#	Article	IF	CITATIONS
145	Structural Biology and Synchrotron Radiation. , 2018, , 81-104.		о
146	Conformational Changes in a Macrolide Antibiotic Binding Protein From Mycobacterium smegmatis Upon ADP Binding. Frontiers in Microbiology, 2021, 12, 780954.	3.5	0