Weisi Lin

List of Publications by Citations

Source: https://exaly.com/author-pdf/2330290/weisi-lin-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

64 13,857 414 102 h-index g-index citations papers 16,925 7.13 477 5.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
414	Perceptual visual quality metrics: A survey. <i>Journal of Visual Communication and Image Representation</i> , 2011 , 22, 297-312	2.7	615
413	Image quality assessment based on gradient similarity. <i>IEEE Transactions on Image Processing</i> , 2012 , 21, 1500-12	8.7	433
412	The Analysis of Image Contrast: From Quality Assessment to Automatic Enhancement. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 284-97	10.2	243
411	Saliency detection in the compressed domain for adaptive image retargeting. <i>IEEE Transactions on Image Processing</i> , 2012 , 21, 3888-901	8.7	226
410	Learning a No-Reference Quality Assessment Model of Enhanced Images With Big Data. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2018 , 29, 1301-1313	10.3	214
409	Just noticeable distortion model and its applications in video coding. <i>Signal Processing: Image Communication</i> , 2005 , 20, 662-680	2.8	203
408	No-reference image sharpness assessment in autoregressive parameter space. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 3218-31	8.7	193
407	. IEEE Transactions on Multimedia, 2016 , 18, 1098-1110	6.6	189
406	Perceptual quality metric with internal generative mechanism. IEEE Transactions on Image	8.7	187
	Processing, 2013 , 22, 43-54	/ 	
405	No-Reference Quality Metric of Contrast-Distorted Images Based on Information Maximization. IEEE Transactions on Cybernetics, 2017, 47, 4559-4565	10.2	184
	No-Reference Quality Metric of Contrast-Distorted Images Based on Information Maximization.	<u> </u>	<u>'</u>
405	No-Reference Quality Metric of Contrast-Distorted Images Based on Information Maximization. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 4559-4565 A psychovisual quality metric in free-energy principle. <i>IEEE Transactions on Image Processing</i> , 2012 ,	10.2	184
405 404	No-Reference Quality Metric of Contrast-Distorted Images Based on Information Maximization. IEEE Transactions on Cybernetics, 2017, 47, 4559-4565 A psychovisual quality metric in free-energy principle. IEEE Transactions on Image Processing, 2012, 21, 41-52 No-Reference Image Blur Assessment Based on Discrete Orthogonal Moments. IEEE Transactions	10.2	184 173
4°5 4°4 4°3	No-Reference Quality Metric of Contrast-Distorted Images Based on Information Maximization. IEEE Transactions on Cybernetics, 2017, 47, 4559-4565 A psychovisual quality metric in free-energy principle. IEEE Transactions on Image Processing, 2012, 21, 41-52 No-Reference Image Blur Assessment Based on Discrete Orthogonal Moments. IEEE Transactions on Cybernetics, 2016, 46, 39-50 A Fast Reliable Image Quality Predictor by Fusing Micro- and Macro-Structures. IEEE Transactions on	10.2 8.7 10.2	184 173 172
405 404 403 402	No-Reference Quality Metric of Contrast-Distorted Images Based on Information Maximization. IEEE Transactions on Cybernetics, 2017, 47, 4559-4565 A psychovisual quality metric in free-energy principle. IEEE Transactions on Image Processing, 2012, 21, 41-52 No-Reference Image Blur Assessment Based on Discrete Orthogonal Moments. IEEE Transactions on Cybernetics, 2016, 46, 39-50 A Fast Reliable Image Quality Predictor by Fusing Micro- and Macro-Structures. IEEE Transactions on Industrial Electronics, 2017, 64, 3903-3912 A Patch-Structure Representation Method for Quality Assessment of Contrast Changed Images.	10.2 8.7 10.2 8.9	184 173 172 167
405 404 403 402 401	No-Reference Quality Metric of Contrast-Distorted Images Based on Information Maximization. IEEE Transactions on Cybernetics, 2017, 47, 4559-4565 A psychovisual quality metric in free-energy principle. IEEE Transactions on Image Processing, 2012, 21, 41-52 No-Reference Image Blur Assessment Based on Discrete Orthogonal Moments. IEEE Transactions on Cybernetics, 2016, 46, 39-50 A Fast Reliable Image Quality Predictor by Fusing Micro- and Macro-Structures. IEEE Transactions on Industrial Electronics, 2017, 64, 3903-3912 A Patch-Structure Representation Method for Quality Assessment of Contrast Changed Images. IEEE Signal Processing Letters, 2015, 22, 2387-2390 Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual	10.2 8.7 10.2 8.9	184 173 172 167 164

(2016-2017)

397	No-Reference Quality Assessment of Screen Content Pictures. <i>IEEE Transactions on Image Processing</i> , 2017 , 26, 4005-4018	8.7	151
396	. IEEE Transactions on Multimedia, 2013 , 15, 96-105	6.6	149
395	Just Noticeable Difference for Images With Decomposition Model for Separating Edge and Textured Regions. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2010 , 20, 1648-1652	6.4	146
394	. IEEE Transactions on Multimedia, 2018 , 20, 2035-2048	6.6	144
393	Perceptual Quality Assessment of Screen Content Images. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 4408-21	8.7	136
392	Modeling visual attention's modulatory aftereffects on visual sensitivity and quality evaluation. <i>IEEE Transactions on Image Processing</i> , 2005 , 14, 1928-42	8.7	131
391	Video saliency incorporating spatiotemporal cues and uncertainty weighting. <i>IEEE Transactions on Image Processing</i> , 2014 , 23, 3910-21	8.7	130
390	Saliency detection for stereoscopic images. <i>IEEE Transactions on Image Processing</i> , 2014 , 23, 2625-36	8.7	129
389	Improved estimation for just-noticeable visual distortion. Signal Processing, 2005, 85, 795-808	4.4	128
388	No-Reference Quality Assessment for Multiply-Distorted Images in Gradient Domain. <i>IEEE Signal Processing Letters</i> , 2016 , 23, 541-545	3.2	127
387	Motion-compensated residue preprocessing in video coding based on just-noticeable-distortion profile. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2005 , 15, 742-752	6.4	127
386	Image quality assessment using multi-method fusion. <i>IEEE Transactions on Image Processing</i> , 2013 , 22, 1793-807	8.7	125
385	. IEEE Transactions on Multimedia, 2012 , 14, 187-198	6.6	123
384	. IEEE Transactions on Multimedia, 2013 , 15, 1700-1705	6.6	119
383	Analysis of Distortion Distribution for Pooling in Image Quality Prediction. <i>IEEE Transactions on Broadcasting</i> , 2016 , 62, 446-456	4.7	116
382	Additive white Gaussian noise level estimation in SVD domain for images. <i>IEEE Transactions on Image Processing</i> , 2013 , 22, 872-83	8.7	116
381	Unified Blind Quality Assessment of Compressed Natural, Graphic, and Screen Content Images. <i>IEEE Transactions on Image Processing</i> , 2017 , 26, 5462-5474	8.7	116
380	. IEEE Transactions on Multimedia, 2016 , 18, 432-443	6.6	114

379	Estimating Just-Noticeable Distortion for Video. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2006 , 16, 820-829	6.4	114
378	. IEEE Transactions on Industrial Informatics, 2014 , 10, 2135-2145	11.9	108
377	Objective image quality assessment based on support vector regression. <i>IEEE Transactions on Neural Networks</i> , 2010 , 21, 515-9		104
376	. IEEE Transactions on Multimedia, 2016 , 18, 2457-2469	6.6	98
375	Image Retargeting Quality Assessment: A Study of Subjective Scores and Objective Metrics. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2012 , 6, 626-639	7.5	96
374	SVD-based quality metric for image and video using machine learning. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2012 , 42, 347-64		94
373	Full-reference quality assessment of stereoscopic images by learning binocular receptive field properties. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 2971-83	8.7	94
372	. IEEE Transactions on Multimedia, 2008 , 10, 1316-1324	6.6	90
371	. IEEE Transactions on Multimedia, 2013 , 15, 1705-1710	6.6	85
370	. IEEE Transactions on Multimedia, 2016 , 18, 1085-1097	6.6	83
369	. IEEE Transactions on Multimedia, 2016 , 18, 1783-1795	6.6	82
368	Model-Based Referenceless Quality Metric of 3D Synthesized Images Using Local Image Description. <i>IEEE Transactions on Image Processing</i> , 2018 , 27, 394-405	8.7	81
367	. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2014 , 4, 95-105	5.2	81
366	Just-noticeable difference estimation with pixels in images. <i>Journal of Visual Communication and Image Representation</i> , 2008 , 19, 30-41	2.7	81
365	. IEEE Transactions on Multimedia, 2017 , 19, 1030-1040	6.6	80
364	Enhanced Just Noticeable Difference Model for Images With Pattern Complexity. <i>IEEE Transactions on Image Processing</i> , 2017 , 26, 2682-2693	8.7	79
363	Learning a blind quality evaluation engine of screen content images. <i>Neurocomputing</i> , 2016 , 196, 140-1	49 .4	78
362	Visual distortion gauge based on discrimination of noticeable contrast changes. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2005 , 15, 900-909	6.4	77

(2012-2012)

361	Fourier transform based scalable image quality measure. <i>IEEE Transactions on Image Processing</i> , 2012 , 21, 3364-77	8.7	74	
360	No Reference Quality Assessment for Screen Content Images With Both Local and Global Feature Representation. <i>IEEE Transactions on Image Processing</i> , 2018 , 27, 1600-1610	8.7	73	
359	Efficient Image Deblocking Based on Postfiltering in Shifted Windows. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2008 , 18, 122-126	6.4	7 ²	
358	Objective Quality Assessment for Image Retargeting Based on Perceptual Geometric Distortion and Information Loss. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2014 , 8, 377-389	7.5	71	
357	Culturing fibroblasts in 3D human hair keratin hydrogels. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 5187-98	9.5	71	
356	Mulsemedia. ACM Transactions on Multimedia Computing, Communications and Applications, 2014 , 11, 1-23	3.4	70	
355	Adaptive downsampling to improve image compression at low bit rates. <i>IEEE Transactions on Image Processing</i> , 2006 , 15, 2513-21	8.7	70	
354	No-reference quality assessment of deblocked images. <i>Neurocomputing</i> , 2016 , 177, 572-584	5.4	69	
353	An Iterative Co-Saliency Framework for RGBD Images. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 233-24	46 0.2	67	
352	Visual Saliency Detection With Free Energy Theory. <i>IEEE Signal Processing Letters</i> , 2015 , 22, 1552-1555	3.2	65	
351	Evaluating Quality of Screen Content Images Via Structural Variation Analysis. <i>IEEE Transactions on Visualization and Computer Graphics</i> , 2018 , 24, 2689-2701	4	65	
350	Reduced-Reference Quality Assessment of Screen Content Images. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2018 , 28, 1-14	6.4	64	
349	. IEEE Transactions on Multimedia, 2020 , 22, 311-323	6.6	62	
348	NMF-Based Image Quality Assessment Using Extreme Learning Machine. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 232-243	10.2	61	
347	Orientation selectivity based visual pattern for reduced-reference image quality assessment. <i>Information Sciences</i> , 2016 , 351, 18-29	7.7	61	
346	. IEEE Transactions on Multimedia, 2018 , 20, 914-926	6.6	59	
345	Toward a Blind Deep Quality Evaluator for Stereoscopic Images Based on Monocular and Binocular Interactions. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 2059-74	8.7	59	
344	. IEEE Transactions on Multimedia, 2012 , 14, 278-290	6.6	58	

343	Subjective and Objective Quality Assessment of Compressed Screen Content Images. <i>IEEE Journal on Emerging and Selected Topics in Circuits and Systems</i> , 2016 , 6, 532-543	5.2	56
342	Semisupervised biased maximum margin analysis for interactive image retrieval. <i>IEEE Transactions on Image Processing</i> , 2012 , 21, 2294-308	8.7	55
341	. Proceedings of the IEEE, 2013 , 101, 2025-2043	14.3	54
340	Objective Quality Assessment and Perceptual Compression of Screen Content Images. <i>IEEE Computer Graphics and Applications</i> , 2018 , 38, 47-58	1.7	53
339	. IEEE Transactions on Multimedia, 2012 , 14, 525-535	6.6	53
338	Learning Markov Clustering Networks for Scene Text Detection 2018 ,		53
337	Visual Orientation Selectivity Based Structure Description. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 4602-13	8.7	52
336	Recurrent Air Quality Predictor Based on Meteorology- and Pollution-Related Factors. <i>IEEE Transactions on Industrial Informatics</i> , 2018 , 14, 3946-3955	11.9	52
335	Just Noticeable Difference Estimation for Screen Content Images. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 3838-51	8.7	52
334	Three Dimensional Scalable Video Adaptation via User-End Perceptual Quality Assessment. <i>IEEE Transactions on Broadcasting</i> , 2008 , 54, 719-727	4.7	50
333	Rate control for videophone using local perceptual cues. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2005 , 15, 496-507	6.4	50
332	. IEEE Transactions on Multimedia, 2016 , 18, 219-232	6.6	48
331	. IEEE Transactions on Multimedia, 2013 , 15, 1843-1854	6.6	48
330	Pattern masking estimation in image with structural uncertainty. <i>IEEE Transactions on Image Processing</i> , 2013 , 22, 4892-904	8.7	48
329	BSD: Blind image quality assessment based on structural degradation. <i>Neurocomputing</i> , 2017 , 236, 93-	10334	47
328	Explore and Model Better I-Frames for Video Coding. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2011 , 21, 1242-1254	6.4	47
327	Backward Registration-Based Aspect Ratio Similarity for Image Retargeting Quality Assessment. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 4286-4297	8.7	47
326	. IEEE Transactions on Multimedia, 2008 , 10, 735-745	6.6	46

(2014-2011)

325	Direct intermode selection for H.264 video coding using phase correlation. <i>IEEE Transactions on Image Processing</i> , 2011 , 20, 461-73	8.7	45	
324	A locally adaptive algorithm for measuring blocking artifacts in images and videos. <i>Signal Processing: Image Communication</i> , 2004 , 19, 499-506	2.8	45	
323	Salient object detection with spatiotemporal background priors for video. <i>IEEE Transactions on Image Processing</i> , 2017 , 26, 3425-3436	8.7	44	
322	Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection. <i>IEEE Transactions on Image Processing</i> , 2021 , 30, 3528-3542	8.7	44	
321	Scene-Based Movie Summarization Via Role-Community Networks. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2013 , 23, 1927-1940	6.4	42	
320	Generalized biased discriminant analysis for content-based image retrieval. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2012 , 42, 282-90		41	
319	. IEEE Transactions on Multimedia, 2012 , 14, 844-857	6.6	40	
318	Skin heat transfer model of facial thermograms and its application in face recognition. <i>Pattern Recognition</i> , 2008 , 41, 2718-2729	7.7	40	
317	Conjunctive patches subspace learning with side information for collaborative image retrieval. <i>IEEE Transactions on Image Processing</i> , 2012 , 21, 3707-20	8.7	38	
316	. IEEE Transactions on Multimedia, 2020 , 22, 2163-2176	6.6	38	
315	Just-Noticeable Difference-Based Perceptual Optimization for JPEG Compression. <i>IEEE Signal Processing Letters</i> , 2017 , 24, 96-100	3.2	37	
314	Learning Receptive Fields and Quality Lookups for Blind Quality Assessment of Stereoscopic Images. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 730-43	10.2	37	
313	Learning Structural Regularity for Evaluating Blocking Artifacts in JPEG Images. <i>IEEE Signal Processing Letters</i> , 2014 , 21, 918-922	3.2	37	
312	. IEEE Transactions on Circuits and Systems for Video Technology, 2014 , 24, 1729-1742	6.4	37	
311	Image Quality Assessment with Degradation on Spatial Structure. <i>IEEE Signal Processing Letters</i> , 2014 , 21, 437-440	3.2	37	
310	. IEEE Transactions on Multimedia, 2016 , 18, 2104-2114	6.6	36	
309	Low-Rank Decomposition-Based Restoration of Compressed Images via Adaptive Noise Estimation. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 4158-4171	8.7	36	
308	Salient region detection by fusing bottom-up and top-down features extracted from a single image. <i>IEEE Transactions on Image Processing</i> , 2014 , 23, 4389-98	8.7	36	

		WEI	si Lin
307	Blind blur assessment for vision-based applications. <i>Journal of Visual Communication and Image Representation</i> , 2009 , 20, 231-241	2.7	36
306	A ParaBoost Method to Image Quality Assessment. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2017 , 28, 107-121	10.3	35
305	A Prediction Backed Model for Quality Assessment of Screen Content and 3-D Synthesized Images. <i>IEEE Transactions on Industrial Informatics</i> , 2018 , 14, 652-660	11.9	35
304	Blind Image Quality Assessment for Stereoscopic Images Using Binocular Guided Quality Lookup and Visual Codebook. <i>IEEE Transactions on Broadcasting</i> , 2015 , 61, 154-165	4.7	34
303	End-to-End Blind Image Quality Prediction With Cascaded Deep Neural Network. <i>IEEE Transactions on Image Processing</i> , 2020 , 29, 7414-7426	8.7	34
302	QoE-Guided Warping for Stereoscopic Image Retargeting. <i>IEEE Transactions on Image Processing</i> , 2017 , 26, 4790-4805	8.7	33
301	Towards Robust Curve Text Detection With Conditional Spatial Expansion 2019,		33
300	. IEEE Transactions on Circuits and Systems for Video Technology, 2019 , 29, 323-335	6.4	33
299	Using Binocular Feature Combination for Blind Quality Assessment of Stereoscopic Images. <i>IEEE Signal Processing Letters</i> , 2015 , 22, 1548-1551	3.2	32
298	Screen image quality assessment incorporating structural degradation measurement 2015,		32
297	2010,		31
296	Multiple-Level Feature-Based Measure for Retargeted Image Quality. <i>IEEE Transactions on Image Processing</i> , 2018 , 27, 451-463	8.7	30
295	Scalable image quality assessment with 2D mel-cepstrum and machine learning approach. <i>Pattern Recognition</i> , 2012 , 45, 299-313	7.7	30
294	Visual quality assessment: recent developments, coding applications and future trends. <i>APSIPA Transactions on Signal and Information Processing</i> , 2013 , 2,	4.4	30
293	. IEEE Transactions on Multimedia, 2015 , 17, 1125-1136	6.6	29
292	Sparse Representation-Based Image Quality Index With Adaptive Sub-Dictionaries. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 3775-86	8.7	29
	Automated anterior segment OCT image analysis for Angle Closure Glaucoma mechanisms	(-	

classification. Computer Methods and Programs in Biomedicine, 2016, 130, 65-75

Transactions on Cybernetics, 2018, 48, 1276-1289

Learning Sparse Representation for Objective Image Retargeting Quality Assessment. IEEE

6.9

10.2 28

29

291

290

(2014-2014)

289	No-Reference Quality Assessment of Contrast-Distorted Images Based on Natural Scene Statistics. <i>IEEE Signal Processing Letters</i> , 2014 , 1-1	3.2	28
288	Bayesian Error Concealment With DCT Pyramid for Images. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2010 , 20, 1224-1232	6.4	28
287	Video Compression Artifact Reduction via Spatio-Temporal Multi-Hypothesis Prediction. <i>IEEE Transactions on Image Processing</i> , 2015 , 24, 6048-61	8.7	27
286	. IEEE Transactions on Multimedia, 2016 , 18, 590-602	6.6	27
285	Image Quality Assessment Based on Local Linear Information and Distortion-Specific Compensation. <i>IEEE Transactions on Image Processing</i> , 2017 , 26, 915-926	8.7	26
284	SGDNet 2019 ,		26
283	A multi-metric fusion approach to visual quality assessment 2011 ,		26
282	. IEEE Transactions on Multimedia, 2016 , 18, 1796-1807	6.6	25
281	Models of Monocular and Binocular Visual Perception in Quality Assessment of Stereoscopic Images. <i>IEEE Transactions on Computational Imaging</i> , 2016 , 2, 123-135	4.5	25
280	Visual distortion assessment with emphasis on spatially transitional regions. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2004 , 14, 559-566	6.4	25
279	. IEEE Transactions on Multimedia, 2019 , 21, 1221-1234	6.6	25
278	2013,		25
277	Learning a referenceless stereopair quality engine with deep nonnegativity constrained sparse autoencoder. <i>Pattern Recognition</i> , 2018 , 76, 242-255	7.7	24
276	Cross-Examination for Angle-Closure Glaucoma Feature Detection. <i>IEEE Journal of Biomedical and Health Informatics</i> , 2016 , 20, 343-54	7.2	24
275	On Predicting Visual Comfort of Stereoscopic Images: A Learning to Rank Based Approach. <i>IEEE Signal Processing Letters</i> , 2016 , 23, 302-306	3.2	24
274	Multiple Description Video Coding Based on Human Visual System Characteristics. <i>IEEE</i> Transactions on Circuits and Systems for Video Technology, 2014 , 24, 1390-1394	6.4	24
273	Reducing location map in prediction-based difference expansion for reversible image data embedding. <i>Signal Processing</i> , 2012 , 92, 819-828	4.4	24
272	Geometric Optimum Experimental Design for Collaborative Image Retrieval. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2014 , 24, 346-359	6.4	24

271	. IEEE Transactions on Multimedia, 2012 , 14, 1127-1139	6.6	24
270	Audio and face video emotion recognition in the wild using deep neural networks and small datasets 2016 ,		24
269	A Highly Efficient Blind Image Quality Assessment Metric of 3-D Synthesized Images Using Outlier Detection. <i>IEEE Transactions on Industrial Informatics</i> , 2019 , 15, 4120-4128	11.9	24
268	A closed-form estimate of 3D ICP covariance 2015 ,		23
267	Learning ECOC Code Matrix for Multiclass Classification with Application to Glaucoma Diagnosis. Journal of Medical Systems, 2016 , 40, 78	5.1	23
266	. IEEE Transactions on Multimedia, 2019 , 21, 2738-2749	6.6	23
265	Scale and orientation invariant text segmentation for born-digital compound images. <i>IEEE Transactions on Cybernetics</i> , 2015 , 45, 533-47	10.2	23
264	Video coding using the most common frame in scene 2010 ,		23
263	No-reference noticeable blockiness estimation in images. <i>Signal Processing: Image Communication</i> , 2008 , 23, 417-432	2.8	23
262	Improved Super-Resolution Reconstruction From Video. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2006 , 16, 1411-1422	6.4	23
261	. IEEE Transactions on Broadcasting, 2020 , 66, 127-139	4.7	23
2 60	Saliency-based stereoscopic image retargeting. <i>Information Sciences</i> , 2016 , 372, 347-358	7.7	22
259	Stereoscopic Visual Attention Guided Seam Carving for Stereoscopic Image Retargeting. <i>Journal of Display Technology</i> , 2016 , 12, 22-30		22
258	Depth Map Coding for View Synthesis Based on Distortion Analyses. <i>IEEE Journal on Emerging and Selected Topics in Circuits and Systems</i> , 2014 , 4, 106-117	5.2	22
257	Spread spectrum image watermarking based on perceptual quality metric. <i>IEEE Transactions on Image Processing</i> , 2011 , 20, 3207-18	8.7	22
256	Using edge direction information for measuring blocking artifacts of images. <i>Multidimensional Systems and Signal Processing</i> , 2007 , 18, 297-308	1.8	22
255	Studying Personality through the Content of Posted and Liked Images on Twitter 2017,		21
254	. IEEE Transactions on Multimedia, 2017 , 19, 93-106	6.6	21

253	CVIQD: Subjective quality evaluation of compressed virtual reality images 2017 ,		21
252	Subjective quality assessment of Screen Content Images 2014 ,		21
251	. IEEE Transactions on Circuits and Systems for Video Technology, 2017 , 27, 1833-1843	6.4	20
250	. IEEE Transactions on Multimedia, 2017 , 19, 1821-1836	6.6	20
249	GridSAR: Grid strength and regularity for robust evaluation of blocking artifacts in JPEG images. <i>Journal of Visual Communication and Image Representation</i> , 2015 , 30, 153-163	2.7	20
248	. IEEE Transactions on Multimedia, 2015 , 17, 2174-2184	6.6	20
247	Personality-assisted Multi-task Learning for Generic and Personalized Image Aesthetics Assessment. <i>IEEE Transactions on Image Processing</i> , 2020 ,	8.7	20
246	. IEEE Transactions on Audio Speech and Language Processing, 2012 , 20, 1217-1232		20
245	Additive log-logistic model for networked video quality assessment. <i>IEEE Transactions on Image Processing</i> , 2013 , 22, 1536-47	8.7	20
244	Do Others Perceive You As You Want Them To? 2015 ,		20
243	Efficient quadtree based block-shift filtering for deblocking and deringing. <i>Journal of Visual Communication and Image Representation</i> , 2009 , 20, 595-607	2.7	20
242	Visual acuity inspired saliency detection by using sparse features. <i>Information Sciences</i> , 2015 , 309, 1-10	7.7	19
241	EPhase poly(vinylidene fluoride) films encouraged more homogeneous cell distribution and more significant deposition of fibronectin towards the cell-material interface compared to Ephase poly(vinylidene fluoride) films. <i>Materials Science and Engineering C</i> , 2014 , 34, 345-53	8.3	19
240	A visual attention model combining top-down and bottom-up mechanisms for salient object detection 2011 ,		19
239	Perceptual quality and objective quality measurements of compressed videos. <i>Journal of Visual Communication and Image Representation</i> , 2006 , 17, 717-737	2.7	19
238	Fine-Grained Quality Assessment for Compressed Images. <i>IEEE Transactions on Image Processing</i> , 2019 , 28, 1163-1175	8.7	19
237	Image retargeting quality assessment based on support vector regression. <i>Signal Processing: Image Communication</i> , 2015 , 39, 444-456	2.8	18
236	Toward Domain Transfer for No-Reference Quality Prediction of Asymmetrically Distorted Stereoscopic Images. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2018 , 28, 573-585	6.4	18

235	Modelling Human Factors in Perceptual Multimedia Quality 2015,		18
234	B-SHOT: A binary feature descriptor for fast and efficient keypoint matching on 3D point clouds 2015 ,		18
233	Surveillance video coding via low-rank and sparse decomposition 2012,		18
232	Quality assessment of retargeted images by salient region deformity analysis. <i>Journal of Visual Communication and Image Representation</i> , 2017 , 43, 108-118	2.7	17
231	. IEEE Transactions on Multimedia, 2018 , 20, 659-674	6.6	17
230	Perceptual screen content image quality assessment and compression 2015,		17
229	Robust image compression based on compressive sensing 2010 ,		17
228	Intermediate Deep Feature Compression: Toward Intelligent Sensing. <i>IEEE Transactions on Image Processing</i> , 2019 ,	8.7	17
227	PMIIMonitoring: Use Information Abundance Measurement and Wide and Deep Learning. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2021 , 32, 4278-4290	10.3	17
226	Performance Evaluation of Visual Tracking Algorithms on Video Sequences With Quality Degradation. <i>IEEE Access</i> , 2017 , 5, 2430-2441	3.5	16
225	B-SHOT: a binary 3D feature descriptor for fast Keypoint matching on 3D point clouds. <i>Autonomous Robots</i> , 2017 , 41, 1501-1520	3	16
224	. IEEE Transactions on Multimedia, 2019 , 21, 2042-2056	6.6	16
223	A Data-Driven Point Cloud Simplification Framework for City-Scale Image-Based Localization. <i>IEEE Transactions on Image Processing</i> , 2017 , 26, 262-275	8.7	16
222	Blind Image Blur Identification in Cepstrum Domain 2007,		16
221	Measuring the negative impact of frame dropping on perceptual visual quality 2005 , 5666, 554		16
220	Color image quality assessment based on sparse representation and reconstruction residual. Journal of Visual Communication and Image Representation, 2016 , 38, 550-560	2.7	16
219	Measuring Individual Video QoE. <i>ACM Transactions on Multimedia Computing, Communications and Applications</i> , 2018 , 14, 1-24	3.4	15
218	Video saliency incorporating spatiotemporal cues and uncertainty weighting 2013,		15

217	Toward Simultaneous Visual Comfort and Depth Sensation Optimization for Stereoscopic 3-D Experience. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 4521-4533	10.2	15
216	2015,		15
215	Saliency-based image retargeting in the compressed domain 2011,		15
214	Random partial paired comparison for subjective video quality assessment via hodgerank 2011 ,		15
213	Comparison of Video Quality Metrics on Multimedia Videos 2006,		15
212	3DHoPD: A Fast Low-Dimensional 3-D Descriptor. <i>IEEE Robotics and Automation Letters</i> , 2017 , 2, 1472-1	47.9	14
211	Rate-Distortion Optimized Sparse Coding With Ordered Dictionary for Image Set Compression. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2018 , 28, 3387-3397	6.4	14
210	Who Likes What and, Why? Insights into Modeling Users IPersonality Based on Image Ilikes I <i>IEEE</i> Transactions on Affective Computing, 2018, 9, 130-143	5.7	14
209	. IEEE Transactions on Circuits and Systems for Video Technology, 2016 , 1-1	6.4	14
208	Reliable feature selection for automated angle closure glaucoma mechanism detection. <i>Journal of Medical Systems</i> , 2015 , 39, 21	5.1	14
207	Exploring V1 by modeling the perceptual quality of images. <i>Journal of Vision</i> , 2014 , 14,	0.4	14
206	Rotated orthogonal transform (ROT) for motion-compensation residual coding. <i>IEEE Transactions on Image Processing</i> , 2012 , 21, 4770-81	8.7	14
205	Visual structural degradation based reduced-reference image quality assessment. <i>Signal Processing: Image Communication</i> , 2016 , 47, 16-27	2.8	14
204	Blind image quality assessment with hierarchy: Degradation from local structure to deep semantics. Journal of Visual Communication and Image Representation, 2019, 58, 353-362	2.7	14
203	Statistical and Structural Information Backed Full-Reference Quality Measure of Compressed Sonar Images. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2020 , 30, 334-348	6.4	14
202	Incremental low-rank and sparse decomposition for compressing videos captured by fixed cameras. Journal of Visual Communication and Image Representation, 2015, 26, 338-348	2.7	13
201	. IEEE Transactions on Circuits and Systems for Video Technology, 2014 , 24, 1898-1910	6.4	13
200	Video coding with dynamic background. <i>Eurasip Journal on Advances in Signal Processing</i> , 2013 , 2013,	1.9	13

199	Progressive Self-Guided Loss for Salient Object Detection. <i>IEEE Transactions on Image Processing</i> , 2021 , 30, 8426-8438	8.7	13
198	Deep Visual Saliency on Stereoscopic Images. IEEE Transactions on Image Processing, 2018,	8.7	13
197	Reference-Free Quality Assessment of Sonar Images via Contour Degradation Measurement. <i>IEEE Transactions on Image Processing</i> , 2019 , 28, 5336-5351	8.7	12
196	Pairwise comparison and rank learning for image quality assessment. <i>Displays</i> , 2016 , 44, 21-26	3.4	12
195	An inter-image redundancy measure for image set compression 2015 ,		12
194	Study of subjective and objective quality assessment of retargeted images 2012,		12
193	Learning a Unified Blind Image Quality Metric via On-Line and Off-Line Big Training Instances. <i>IEEE Transactions on Big Data</i> , 2020 , 6, 780-791	3.2	12
192	Reduced-reference quality assessment of image super-resolution by energy change and texture variation. <i>Journal of Visual Communication and Image Representation</i> , 2019 , 60, 140-148	2.7	11
191	Just Noticeable Difference for natural images using RMS contrast and feed-back mechanism. <i>Neurocomputing</i> , 2018 , 275, 366-376	5.4	11
190	No-reference image quality assessment with visual pattern degradation. <i>Information Sciences</i> , 2019 , 504, 487-500	7.7	11
189	Optimal compression plane for efficient video coding. <i>IEEE Transactions on Image Processing</i> , 2011 , 20, 2788-99	8.7	11
188	Enhanced just noticeable difference model with visual regularity consideration 2016,		11
187	Visual-Attention-Based Pixel Dimming Technique for OLED Displays of Mobile Devices. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 7159-7167	8.9	11
186	Unified Information Fusion Network for Multi-Modal RGB-D and RGB-T Salient Object Detection. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 1-1	6.4	11
185	Point Cloud Saliency Detection by Local and Global Feature Fusion. <i>IEEE Transactions on Image Processing</i> , 2019 , 28, 5379-5393	8.7	10
184	Stereoscopic image retargeting based on 3D saliency detection 2014 ,		10
183	Discretized-Vapnik-Chervonenkis dimension for analyzing complexity of real function classes. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2012 , 23, 1461-72	10.3	10
182	Scalable image quality assessment based on structural vectors 2009 ,		10

(2015-2010)

181	Non-intrusive Speech Quality Assessment with Support Vector Regression. <i>Lecture Notes in Computer Science</i> , 2010 , 325-335	0.9	10
180	Quality assessment of 3D synthesized images via disoccluded region discovery 2016 ,		10
179	Blind Image Quality Assessment With Active Inference. <i>IEEE Transactions on Image Processing</i> , 2021 , 30, 3650-3663	8.7	10
178	Context-aware Deep Learning for Multi-modal Depression Detection 2019,		9
177	Subjective quality evaluation of compressed digital compound images. <i>Journal of Visual Communication and Image Representation</i> , 2015 , 26, 105-114	2.7	9
176	Low-complexity video coding based on two-dimensional singular value decomposition. <i>IEEE Transactions on Image Processing</i> , 2012 , 21, 674-87	8.7	9
175	High-Efficiency Image Coding via Near-Optimal Filtering. <i>IEEE Signal Processing Letters</i> , 2017 , 24, 1403-1	4,027	9
174	Mode-dependent templates and scan order for H.264/AVC-based intra lossless coding. <i>IEEE Transactions on Image Processing</i> , 2012 , 21, 4106-16	8.7	9
173	Learning based screen image compression 2012 ,		9
172	LGPS: Phase Based Image Quality Assessment Metric. Signal Processing Systems Design and Implementation (siPS), IEEE Workshop on, 2007,		9
171	Perceptual Quality Metric for H.264 Low Bit Rate Videos 2006 ,		9
170	Fast Edge-Preserved Postprocessing for Compressed Images. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2006 , 16, 1142-1147	6.4	9
169	Marker-based image segmentation relying on disjoint set union. <i>Signal Processing: Image Communication</i> , 2006 , 21, 100-112	2.8	9
168	Multi-Content Complementation Network for Salient Object Detection in Optical Remote Sensing Images. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 2021 , 1-1	8.1	9
167	Survey of visual just noticeable difference estimation. Frontiers of Computer Science, 2019, 13, 4-15	2.2	9
166	Learning visual saliency from human fixations for stereoscopic images. <i>Neurocomputing</i> , 2017 , 266, 284	-392	8
165	Low-Complexity Depth Coding by Depth Sensitivity Aware Rate-Distortion Optimization. <i>IEEE Transactions on Broadcasting</i> , 2016 , 62, 94-102	4.7	8
164	Compression noise estimation and reduction via patch clustering 2015 ,		8

163	2015,		8
162	Saliency detection for stereoscopic images 2013 ,		8
161	. IEEE Transactions on Circuits and Systems for Video Technology, 2021 , 1-1	6.4	8
160	Lossy Intermediate Deep Learning Feature Compression and Evaluation 2019,		7
159	Exploiting entropy masking in perceptual graphic rendering. <i>Signal Processing: Image Communication</i> , 2015 , 33, 1-13	2.8	7
158	No-reference hybrid video quality assessment based on partial least squares regression. <i>Multimedia Tools and Applications</i> , 2015 , 74, 10277-10290	2.5	7
157	Hierarchical Feature Degradation Based Blind Image Quality Assessment 2017,		7
156	Subjective and objective quality evaluation of sonar images for underwater acoustic transmission 2017 ,		7
155	A general histogram modification framework for efficient contrast enhancement 2015,		7
154	Reduced-reference image quality assessment with local binary structural pattern 2014,		7
153	Fast and efficient blind image quality index in spatial domain. <i>Electronics Letters</i> , 2013 , 49, 1137-1138	1.1	7
152	Demosaicing with improved edge direction detection		7
151	Computational Models for Just-Noticeable Difference. Signal Processing and Communications, 2005, 28	1-303	7
150	Understanding Deep Representations Learned in Modeling Users Likes. <i>IEEE Transactions on Image Processing</i> , 2016 , 25, 3762-74	8.7	7
149	No-reference image quality assessment based on high order derivatives 2016 ,		7
148	Content-Insensitive Blind Image Blurriness Assessment Using Weibull Statistics and Sparse Extreme Learning Machine. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2019 , 49, 516-527	7.3	7
147	Effective visual tracking by pairwise metric learning. <i>Neurocomputing</i> , 2017 , 261, 266-275	5.4	6
146	. IEEE Transactions on Circuits and Systems for Video Technology, 2018 , 28, 3141-3153	6.4	6

145	Aspect Ratio Similarity (ARS) for image retargeting quality assessment 2016,		6
144	Detecting keypoint sets on 3D point clouds via Histogram of Normal Orientations. <i>Pattern Recognition Letters</i> , 2016 , 83, 42-48	4.7	6
143	Complex wavelet based quality assessment for AS-OCT images with application to Angle Closure Glaucoma diagnosis. <i>Computer Methods and Programs in Biomedicine</i> , 2016 , 130, 13-21	6.9	6
142	Facial action recognition using very deep networks for highly imbalanced class distribution 2017,		6
141	Nonlocal Adaptive In-Loop Filter via Content-Dependent Soft-Thresholding for HEVC 2015 ,		6
140	Content-based image quality assessment using semantic information and luminance differences. <i>Electronics Letters</i> , 2014 , 50, 1435-1436	1.1	6
139	An Overview of Perceptual Processing for Digital Pictures 2012 ,		6
138	Performance analysis, parameter selection and extensions to H.264/AVC FRExt for high resolution video coding. <i>Journal of Visual Communication and Image Representation</i> , 2011 , 22, 749-759	2.7	6
137	2010,		6
136	Feature Selection for Computer-Aided Angle Closure Glaucoma Mechanism Detection. <i>Journal of Medical Imaging and Health Informatics</i> , 2012 , 2, 438-444	1.2	6
135	Performance of reconstruction-based super-resolution with regularization. <i>Journal of Visual Communication and Image Representation</i> , 2010 , 21, 640-650	2.7	6
134	Geometrically determining the leaky bucket parameters for video streaming over constant bit-rate channels. <i>Signal Processing: Image Communication</i> , 2005 , 20, 193-204	2.8	6
133	Cascaded Parallel Filtering for Memory-Efficient Image-Based Localization 2019,		6
132	Blind image quality assessment based on joint log-contrast statistics. <i>Neurocomputing</i> , 2019 , 331, 189-1	98 4	6
131	Personalizing User Interfaces for improving quality of experience in VoD recommender systems 2016 ,		5
130	Pattern-based video coding with dynamic background modeling. <i>Eurasip Journal on Advances in Signal Processing</i> , 2013 , 2013,	1.9	5
129	A novel SVD-based image quality assessment metric 2013 ,		5
128	Using multiscale analysis for blind quality assessment of DIBR-synthesized images 2017 ,		5

127	Rate-distortion based sparse coding for image set compression 2015 ,		5
126	Rank learning on training set selection and image quality assessment 2014 ,		5
125	Gaussian Noise Level Estimation in SVD Domain for Images 2012,		5
124	Objective quality assessment for image retargeting based on perceptual distortion and information loss 2013 ,		5
123	Recent advances and challenges of visual signal quality assessment. <i>China Communications</i> , 2013 , 10, 62-78	3	5
122	Two dimensional Singular Value Decomposition (2D-SVD) based video coding 2010 ,		5
121	McFIS in hierarchical bipredictve pictures-based video coding for referencing the stable area in a scene 2011 ,		5
120	Introduction to the Special Issue on New Subjective and Objective Methodologies for Audio and Visual Signal Processing. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2012 , 6, 614-615	7.5	5
119	Perceptual quality metric for compressed videos		5
118	Salient Object Detection by Spatiotemporal and Semantic Features in Real-Time Video Processing Systems. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 9893-9903	8.9	5
117	End-to-End Ensemble Learning by Exploiting the Correlation Between Individuals and Weights. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 2835-2846	10.2	5
116	Temporal Reasoning Guided QoE Evaluation for Mobile Live Video Broadcasting. <i>IEEE Transactions on Image Processing</i> , 2021 , 30, 3279-3292	8.7	5
115	A Two-Stage Outlier Filtering Framework for City-Scale Localization Using 3D SfM Point Clouds. <i>IEEE Transactions on Image Processing</i> , 2019 , 28, 4857-4869	8.7	4
114	Dense correspondence based prediction for image set compression 2015 ,		4
113	Dominant SIFT: A novel compact descriptor 2015 ,		4
112	A benchmark for robustness analysis of visual tracking algorithms 2016 ,		4
111	Review of Existing Objective QoE Methodologies 2015 , 29-67		4
110	2015,		4

109	Emotional facial expression transfer based on temporal restricted Boltzmann machines 2014,		4
108	Rate-perceptual-distortion optimization (RpDO) based picture coding [Issues and challenges 2014 ,		4
107	Saliency detection in computer rendered images based on object-level contrast. <i>Journal of Visual Communication and Image Representation</i> , 2014 , 25, 525-533	2.7	4
106	Visual-saliency-enhanced image quality assessment indices 2013,		4
105	Bayesian error concealment with DCT pyramid 2010 ,		4
104	Unsupervised malaria parasite detection based on phase spectrum. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2011 , 2011, 7997-8000	0.9	4
103	Machine learning based modeling of spatial and temporal factors for video quality assessment 2011 ,		4
102	Perceptual image quality assessment: recent progress and trends 2010 ,		4
101	Image error-concealment via Block-based Bilateral Filtering 2008,		4
100	Video Quality Metrics - An Analysis for Low Bit Rate Videos 2007,		4
100 99	Video Quality Metrics - An Analysis for Low Bit Rate Videos 2007 , Object-level Attention for Aesthetic Rating Distribution Prediction 2020 ,		4
99	Object-level Attention for Aesthetic Rating Distribution Prediction 2020 ,	8.7	4
99 98	Object-level Attention for Aesthetic Rating Distribution Prediction 2020, Quality assessment for image super-resolution based on energy change and texture variation 2016, Approximate Intrinsic Voxel Structure for Point Cloud Simplification. <i>IEEE Transactions on Image</i>	8.7	4
99 98 97	Object-level Attention for Aesthetic Rating Distribution Prediction 2020, Quality assessment for image super-resolution based on energy change and texture variation 2016, Approximate Intrinsic Voxel Structure for Point Cloud Simplification. <i>IEEE Transactions on Image Processing</i> , 2021, 30, 7241-7255	,	4 4
99 98 97 96	Object-level Attention for Aesthetic Rating Distribution Prediction 2020, Quality assessment for image super-resolution based on energy change and texture variation 2016, Approximate Intrinsic Voxel Structure for Point Cloud Simplification. <i>IEEE Transactions on Image Processing</i> , 2021, 30, 7241-7255 . <i>IEEE Transactions on Multimedia</i> , 2021, 1-1 Pyramidal modeling of geometric distortions for retargeted image quality evaluation. <i>Multimedia</i>	6.6	4 4
99 98 97 96	Object-level Attention for Aesthetic Rating Distribution Prediction 2020, Quality assessment for image super-resolution based on energy change and texture variation 2016, Approximate Intrinsic Voxel Structure for Point Cloud Simplification. <i>IEEE Transactions on Image Processing</i> , 2021, 30, 7241-7255 . IEEE Transactions on Multimedia, 2021, 1-1 Pyramidal modeling of geometric distortions for retargeted image quality evaluation. Multimedia Tools and Applications, 2018, 77, 13799-13820	6.6	4 4 4 4

Optimising ensemble combination based on maximisation of diversity. *Electronics Letters*, **2017**, 53, 1042£1044 3

90	Multi-task rank learning for image quality assessment 2015 ,		3
89	Study on subjective quality assessment of Digital Compound Images 2014,		3
88	Perceptual multiview video coding using synthesized Just Noticeable Distortion maps 2011,		3
87	Enhanced Just Noticeable Difference (JND) estimation with image decomposition 2010,		3
86	Lossless video compression with optimal compression plane determination 2009,		3
85	Shifted Window Based Filtering for Alleviating Blocking Artifacts. Signal Processing Systems Design and Implementation (siPS), IEEE Workshop on, 2007,		3
84	Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation. IEEE Transactions on Geoscience and Remote Sensing, 2022, 1-1	8.1	3
83	Fast Automatic Video Object Segmentation for Content-Based Applications 2006 , 140-160		3
82	Bottom-Up Saliency Detection Model Based on Amplitude Spectrum. <i>Lecture Notes in Computer Science</i> , 2011 , 370-380	0.9	3
81	Content-Dependency Reduction With Multi-Task Learning In Blind Stitched Panoramic Image Quality Assessment 2020 ,		3
80	Mobile acoustic Emotion Recognition 2016 ,		3
79	Efficient Lagrange multiplier selection algorithm for depth maps coding. <i>Electronics Letters</i> , 2016 , 52, 1681-1683	1.1	3
78	. IEEE Transactions on Multimedia, 2021 , 1-1	6.6	3
77	LGGD+: Image Retargeting Quality Assessment by Measuring Local and Global Geometric Distortions. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 1-1	6.4	3
76	A novel distortion criterion of rate-distortion optimization for depth map coding. <i>Journal of Visual Communication and Image Representation</i> , 2018 , 54, 145-154	2.7	3
75	Robustness Analysis of Pedestrian Detectors for Surveillance. <i>IEEE Access</i> , 2018 , 6, 28890-28902	3.5	3
74	Fine-Grained Image Quality Assessment: A Revisit and Further Thinking. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 1-1	6.4	3

(2008-2022)

73	A no-Reference Stereoscopic Image Quality Assessment Network Based on Binocular Interaction and Fusion Mechanisms <i>IEEE Transactions on Image Processing</i> , 2022 , 31, 3066-3080	8.7	3
72	. IEEE Access, 2017 , 5, 4690-4703	3.5	2
71	Cloud Based Image Contrast Enhancement 2015 ,		2
70	An Energy-Constrained Video Retargeting Approach for Color-Plus-Depth 3D Video. <i>Journal of Display Technology</i> , 2016 , 12, 491-499		2
69	No-reference Image Quality Assessment Based on Structural and Luminance Information. <i>Lecture Notes in Computer Science</i> , 2016 , 301-312	0.9	2
68	Advances in Multimedia Content Analysis and Signal Processing. <i>Journal of Signal Processing Systems</i> , 2014 , 74, 1-3	1.4	2
67	Fast synthesized and predicted just noticeable distortion maps for perceptual multiview video coding. <i>Journal of Visual Communication and Image Representation</i> , 2013 , 24, 700-707	2.7	2
66	On creating low dimensional 3D feature descriptors with PCA 2017 ,		2
65	Methods for Image Quality Assessment 2015 , 1-11		2
64	Facial Scanning With a Digital Camera: A Novel Way of Screening for Primary Angle Closure. <i>Journal of Glaucoma</i> , 2015 , 24, 522-6	2.1	2
63	Observation model based perceptually motivated bilateral filter for image reconstruction 2015,		2
62	Reduced-reference image quality assessment with orientation selectivity based visual pattern 2015 ,		2
61	Learning visual saliency for stereoscopic images 2014 ,		2
60	2011,		2
59	Comparison between H.264/AVC and Motion jpeg2000 for super-high definition video coding 2010 ,		2
58	2011,		2
57	Efficient Video Coding Considering a Video as a 3D Data Cube 2011 ,		2
56	Adaptive downsampling/upsampling for better video compression at low bit rate 2008,		2

Layered image resizing in compression domain. Signal Processing: Image Communication, 2008, 23, 58-692.8 55 A Wavelet-Based Visible Distortion Measure for Video Quality Evaluation 2006, 54 Initial Image Selection and its Influence on Super-Resolution Reconstruction. Signal Processing 2 53 Systems Design and Implementation (siPS), IEEE Workshop on, 2007, Contrast signal-to-noise ratio for image quality assessment 2005, 52 Objective quality assessment for compressed video 2 51 Video quality assessment using neural network based on multi-feature extraction 2003, 50 2 A new marker-based watershed algorithm 49 2 Gauging Image and Video Quality in Industrial Applications. Studies in Computational Intelligence, 48 0.8 2 2008, 117-137 Perception Based Down Sampling for Low Bit Rate Image Coding. Lecture Notes in Computer 0.9 2 47 Science, 2009, 212-221 46 Transform-domain in-loop filter with block similarity for HEVC 2016, Blind image quality prediction with hierarchical feature aggregation. Information Sciences, 2021, 45 7.7 2 552, 167-182 Bi-disparity sparse feature learning for 3D visual discomfort prediction. Signal Processing, 2021, 2 44 4.4 188, 108179 StereoARS: Quality Evaluation for Stereoscopic Image Retargeting With Binocular Inconsistency 43 4.7 2 Detection. IEEE Transactions on Broadcasting, 2021, 1-15 Beyond Ranking Loss: Deep Holographic Networks for Multi-Label Video Search 2019, 42 Signal-Independent Separable KLT by Offline Training for Video Coding. IEEE Access, 2019, 7, 33087-3309,3; 1 41 A semantic subspace learning method to exploit relevance feedback log data for image retrieval 40 2013. No-reference image quality assessment with orientation selectivity mechanism 2017, 39 1 Performance scoring of singing voice 2015, 38

37	Retargeted Image Quality Assessment: Current Progresses and Future Trends 2015, 213-242	1
36	3D point cloud simplification for image-based localization 2015 ,	1
35	Operational rate-distortion shape coding with dual error regularization 2014,	1
34	2010,	1
33	A comparative study on attention-based rate adaptation for scalable video coding 2009,	1
32	Task division for parallel implementation of object identification system based on alternating hypothesize-verify-extend strategy. <i>Concurrency and Computation: Practice and Experience</i> , 1997 , 9, 859-876	1
31	Cross-dimensional quality assessment for low bitrate video 2008,	1
30	Analysis of the H.264 advanced video coding standard and an associated rate control scheme. Journal of Electronic Imaging, 2008, 17, 043023	1
29	Mobile video processing for visual saliency map determination 2008,	1
28	Two-Layer Image Resizing for Scalable CODEC 2006 ,	1
27	Perceptually adaptive hybrid video encoding based on just-noticeable-distortion profile 2003 , 5150, 1448	1
26	PSQM-based RR and NR video quality metrics 2003 ,	1
25	Video quality metric for low bitrate compressed videos	1
24	. IEEE Transactions on Consumer Electronics, 2002 , 48, 209-219 4.8	1
23	Benchmarking Screen Content Image Quality Evaluation in Spatial Psychovisual Modulation Display System. <i>Lecture Notes in Computer Science</i> , 2018 , 629-640	1
22	Improved Salient Object Detection Based on Background Priors. <i>Lecture Notes in Computer Science</i> , 0.9	1
21	Adaptive Orthogonal Transform for Motion Compensation Residual in Video Compression. <i>Lecture Notes in Computer Science</i> , 2011 , 40-50	1
20	Computational Models for Top-down Visual Attention167-205	1

19	Introduction to Visual Attention1-24		1
18	Quality Assessment and Perception in Computer Graphics. <i>IEEE Computer Graphics and Applications</i> , 2016 , 36, 21-22	1.7	1
17	Detection and estimation of supra-threshold distortion levels of pictures based on just-noticeable difference 2016 ,		1
16	. IEEE Transactions on Circuits and Systems for Video Technology, 2019 , 29, 3393-3403	6.4	1
15	Just Noticeable Difference for Deep Machine Vision. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2021 , 1-1	6.4	1
14	. IEEE Transactions on Circuits and Systems for Video Technology, 2021 , 1-1	6.4	1
13	Low Bit-rate 3D feature descriptors for depth data from Kinect-style sensors. <i>Signal Processing: Image Communication</i> , 2017 , 51, 40-49	2.8	
12	Metrics Fusion. Springer Briefs in Electrical and Computer Engineering, 2015, 93-122	0.4	
11	Correlation based universal image/video coding loss recovery. <i>Journal of Visual Communication and Image Representation</i> , 2014 , 25, 1507-1515	2.7	
10	Feature Pooling by Learning. Springer Briefs in Electrical and Computer Engineering, 2015, 67-91	0.4	
9	Image Features and Feature Processing. Springer Briefs in Electrical and Computer Engineering, 2015, 37	7-654	
8	Summary and Remarks for Future Research. <i>Springer Briefs in Electrical and Computer Engineering</i> , 2015 , 123-132	0.4	
7	Blind Measurement of Image Blur for Vision-Based Applications. <i>Studies in Computational Intelligence</i> , 2011 , 185-215	0.8	
6	Summary, Further Discussions and Conclusions305-323		
5	Application of Attention Models in Image Processing271-303		
4	Fast Bottom-Up Computational Models in the Spectral Domain119-165		
3	Validation and Evaluation for Visual Attention Models207-220		
2	Computational Models in the Spatial Domain73-118		

LIST OF PUBLICATIONS

1

Video Frame Synthesis via Plug-and-Play Deep Locally Temporal Embedding. *IEEE Access*, **2019**, 7, 179304-479319