
Jackie A Davies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2330166/publications.pdf Version: 2024-02-01

LACKIE & DAVIES

#	Article	IF	CITATIONS
1	The Heliospheric Imagers Onboard the STEREO Mission. Solar Physics, 2009, 254, 387-445.	2.5	312
2	GEOMETRIC TRIANGULATION OF IMAGING OBSERVATIONS TO TRACK CORONAL MASS EJECTIONS CONTINUOUSLY OUT TO 1 AU. Astrophysical Journal Letters, 2010, 710, L82-L87.	8.3	170
3	First imaging of corotating interaction regions using the STEREO spacecraft. Geophysical Research Letters, 2008, 35, .	4.0	165
4	A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO. Geophysical Research Letters, 2009, 36, .	4.0	164
5	CONNECTING SPEEDS, DIRECTIONS AND ARRIVAL TIMES OF 22 CORONAL MASS EJECTIONS FROM THE SUN TO 1 AU. Astrophysical Journal, 2014, 787, 119.	4.5	145
6	THE DEFLECTION OF THE TWO INTERACTING CORONAL MASS EJECTIONS OF 2010 MAY 23-24 AS REVEALED BY COMBINED IN SITU MEASUREMENTS AND HELIOSPHERIC IMAGING. Astrophysical Journal, 2012, 759, 68.	4.5	137
7	DETERMINING THE AZIMUTHAL PROPERTIES OF CORONAL MASS EJECTIONS FROM MULTI-SPACECRAFT REMOTE-SENSING OBSERVATIONS WITH <i>STEREO</i> SECCHI. Astrophysical Journal, 2010, 715, 493-499.	4.5	126
8	A SELF-SIMILAR EXPANSION MODEL FOR USE IN SOLAR WIND TRANSIENT PROPAGATION STUDIES. Astrophysical Journal, 2012, 750, 23.	4.5	120
9	ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS. Astrophysical Journal, 2013, 769, 45.	4.5	120
10	Stereoscopic imaging of an Earthâ€impacting solar coronal mass ejection: A major milestone for the STEREO mission. Geophysical Research Letters, 2009, 36, .	4.0	110
11	MULTI-POINT SHOCK AND FLUX ROPE ANALYSIS OF MULTIPLE INTERPLANETARY CORONAL MASS EJECTIONS AROUND 2010 AUGUST 1 IN THE INNER HELIOSPHERE. Astrophysical Journal, 2012, 758, 10.	4.5	109
12	A Multispacecraft Analysis of a Small-Scale Transient Entrained by Solar Wind Streams. Solar Physics, 2009, 256, 307-326.	2.5	93
13	First Imaging of Coronal Mass Ejections in the Heliosphere Viewed from Outside the Sun – Earth Line. Solar Physics, 2008, 247, 171-193.	2.5	92
14	OBSERVATIONAL EVIDENCE OF A CORONAL MASS EJECTION DISTORTION DIRECTLY ATTRIBUTABLE TO A STRUCTURED SOLAR WIND. Astrophysical Journal Letters, 2010, 714, L128-L132.	8.3	90
15	ESTABLISHING A STEREOSCOPIC TECHNIQUE FOR DETERMINING THE KINEMATIC PROPERTIES OF SOLAR WIND TRANSIENTS BASED ON A GENERALIZED SELF-SIMILARLY EXPANDING CIRCULAR GEOMETRY. Astrophysical Journal, 2013, 777, 167.	4.5	88
16	AN ANALYSIS OF THE ORIGIN AND PROPAGATION OF THE MULTIPLE CORONAL MASS EJECTIONS OF 2010 AUGUST 1. Astrophysical Journal, 2012, 750, 45.	4.5	82
17	Intermittent release of transients in the slow solar wind: 1. Remote sensing observations. Journal of Geophysical Research, 2010, 115, .	3.3	80
18	Speeds and Arrival Times of Solar Transients Approximated by Self-similar Expanding Circular Fronts. Solar Physics, 2013, 285, 411-423.	2.5	73

JACKIE A DAVIES

#	Article	IF	CITATIONS
19	A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft. Journal of Geophysical Research, 2009, 114, .	3.3	65
20	Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory. Space Weather, 2017, 15, 955-970.	3.7	65
21	ElEvoHI: A NOVEL CME PREDICTION TOOL FOR HELIOSPHERIC IMAGING COMBINING AN ELLIPTICAL FRONT WITH DRAG-BASED MODEL FITTING. Astrophysical Journal, 2016, 824, 131.	4.5	63
22	Intermittent release of transients in the slow solar wind: 2. In situ evidence. Journal of Geophysical Research, 2010, 115, .	3.3	52
23	Relating Streamer Flows to Density and Magnetic Structures at the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 37.	7.7	52
24	ARRIVAL TIME CALCULATION FOR INTERPLANETARY CORONAL MASS EJECTIONS WITH CIRCULAR FRONTS AND APPLICATION TO <i>STEREO</i> OBSERVATIONS OF THE 2009 FEBRUARY 13 ERUPTION. Astrophysical Journal, 2011, 741, 34.	4.5	51
25	Coronal Magnetic Structure of Earthbound CMEs and In Situ Comparison. Space Weather, 2018, 16, 442-460.	3.7	51
26	Two Years of the STEREO Heliospheric Imagers. Solar Physics, 2009, 256, 219-237.	2.5	47
27	COMBINED MULTIPOINT REMOTE AND IN SITU OBSERVATIONS OF THE ASYMMETRIC EVOLUTION OF A FAST SOLAR CORONAL MASS EJECTION. Astrophysical Journal Letters, 2014, 790, L6.	8.3	45
28	The radial width of a Coronal Mass Ejection between 0.1 and 0.4 AU estimated from the Heliospheric Imager on STEREO. Annales Geophysicae, 2009, 27, 4349-4358.	1.6	44
29	CMEs in the Heliosphere: I. A Statistical Analysis of the Observational Properties of CMEs Detected in the Heliosphere from 2007 to 2017 by STEREO/HI-1. Solar Physics, 2018, 293, 1.	2.5	36
30	Formation of the lowâ€latitude boundary layer and cusp under the northward IMF: Simultaneous observations by Cluster and Double Star. Journal of Geophysical Research, 2008, 113, .	3.3	32
31	Three-Dimensional Properties of Coronal Mass Ejections from STEREO/SECCHI Observations. Solar Physics, 2012, 281, 167.	2.5	30
32	A COMPARISON OF RECONSTRUCTION METHODS FOR THE ESTIMATION OF CORONAL MASS EJECTIONS KINEMATICS BASED ON SECCHI/HI OBSERVATIONS. Astrophysical Journal, 2014, 784, 135.	4.5	30
33	Assessing the Accuracy of CME Speed and Trajectory Estimates from STEREO Observations Through aÂComparison of Independent Methods. Solar Physics, 2010, 263, 209-222.	2.5	27
34	Validation of a priori CME arrival predictions made using realâ€ŧime heliospheric imager observations. Space Weather, 2015, 13, 35-48.	3.7	27
35	Deriving solar transient characteristics from single spacecraft STEREO/HI elongation variations: a theoretical assessment of the technique. Annales Geophysicae, 2009, 27, 4359-4368.	1.6	25
36	The Solar Stormwatch CME catalogue: Results from the first space weather citizen science project. Space Weather, 2014, 12, 657-674.	3.7	25

JACKIE A DAVIES

#	Article	IF	CITATIONS
37	Long-Term Tracking of Corotating Density Structures Using Heliospheric Imaging. Solar Physics, 2016, 291, 1853-1875.	2.5	25
38	CMEs in the Heliosphere: II. A Statistical Analysis of the Kinematic Properties Derived from Single-Spacecraft Geometrical Modelling Techniques Applied to CMEs Detected in the Heliosphere from 2007 to 2017 by STEREO/HI-1. Solar Physics, 2019, 294, 1.	2.5	25
39	Multipoint Interplanetary Coronal Mass Ejections Observed with Solar Orbiter, BepiColombo, Parker Solar Probe, Wind, and STEREO-A. Astrophysical Journal Letters, 2022, 924, L6.	8.3	25
40	On the formation of the high-altitude stagnant cusp: Cluster observations. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	24
41	A comparison of Cluster magnetic data with the Tsyganenko 2001 model. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	24
42	3D Reconstruction of Interplanetary Scintillation (IPS) Remote-Sensing Data: Global Solar Wind Boundaries for Driving 3D-MHD Models. Solar Physics, 2015, 290, 2519-2538.	2.5	24
43	Observational Tracking of the 2D Structure of Coronal Mass Ejections Between the Sun and 1 AU. Solar Physics, 2012, 279, 517-535.	2.5	23
44	The application of heliospheric imaging to space weather operations: Lessons learned from published studies. Space Weather, 2017, 15, 985-1003.	3.7	23
45	A comparison of EISCAT and SuperDARN <i>F</i> â€region measurements with consideration of the refractive index in the scattering volume. Journal of Geophysical Research, 2010, 115, .	3.3	22
46	Testing the current paradigm for space weather prediction with heliospheric imagers. Space Weather, 2017, 15, 782-803.	3.7	22
47	Evaluation of CME Arrival Prediction Using Ensemble Modeling Based on Heliospheric Imaging Observations. Space Weather, 2021, 19, e2020SW002553.	3.7	21
48	AUTOMATED DETECTION OF CORONAL MASS EJECTIONS IN STEREO HELIOSPHERIC IMAGER DATA. Astrophysical Journal, 2016, 833, 80.	4.5	19
49	The distribution of interplanetary dust between 0.96 and 1.04 au as inferred from impacts on the STEREO spacecraft observed by the heliospheric imagersâ~ Monthly Notices of the Royal Astronomical Society, 2012, 420, 1355-1366.	4.4	17
50	The utility of polarized heliospheric imaging for space weather monitoring. Space Weather, 2016, 14, 32-49.	3.7	16
51	Differences between the CME fronts tracked by an expert, an automated algorithm, and the Solar Stormwatch project. Space Weather, 2015, 13, 709-725.	3.7	14
52	Determination of the Photometric Calibration and Large-Scale Flatfield of the STEREO Heliospheric Imagers: II. HI-2. Solar Physics, 2015, 290, 2143-2170.	2.5	14
53	CMEs in the Heliosphere: III. A Statistical Analysis of the Kinematic Properties Derived from Stereoscopic Geometrical Modelling Techniques Applied to CMEs Detected in the Heliosphere from 2008 to 2014 by STEREO/HI-1. Solar Physics, 2020, 295, 1.	2.5	13
54	Global observations of energetic electrons around the time of a substorm on 27 August 2001. Journal of Geophysical Research, 2005, 110, .	3.3	12

JACKIE A DAVIES

#	Article	IF	CITATIONS
55	Why are ELEvoHI CME Arrival Predictions Different if Based on STEREOâ€A or STEREOâ€B Heliospheric Imager Observations?. Space Weather, 2021, 19, e2020SW002674.	3.7	11
56	Simultaneous interplanetary scintillation and Heliospheric Imager observations of a coronal mass ejection. Geophysical Research Letters, 2008, 35, .	4.0	8
57	Transient Structures and Stream Interaction Regions inÂthe Solar Wind: Results from EISCAT Interplanetary Scintillation, STEREO HI and Venus Express ASPERA-4 Measurements. Solar Physics, 2010, 265, 207-231.	2.5	8
58	On the Long-Term Evolution of the Sensitivity of the STEREO HI-1 Cameras. Solar Physics, 2017, 292, 1.	2.5	8
59	A journey of exploration to the polar regions of a star: probing the solar poles and the heliosphere from high helio-latitude. Experimental Astronomy, 2022, 54, 157-183.	3.7	8
60	Prospective Out-of-ecliptic White-light Imaging of Interplanetary Corotating Interaction Regions at Solar Maximum. Astrophysical Journal, 2017, 844, 76.	4.5	7
61	Prospective White-light Imaging and In Situ Measurements of Quiescent Large-scale Solar-wind Streams from the <i>Parker Solar Probe</i> and <i>Solar Orbiter</i> . Astrophysical Journal, 2018, 868, 137.	4.5	7
62	Quantifying the Uncertainty in CME Kinematics Derived From Geometric Modeling of Heliospheric Imager Data. Space Weather, 2022, 20, .	3.7	6
63	Prospective Out-of-ecliptic White-light Imaging of Coronal Mass Ejections Traveling through the Corona and Heliosphere. Astrophysical Journal, 2018, 852, 111.	4.5	5
64	Pre-CME Onset Fuses – Do the STEREO Heliospheric Imagers Hold the Clues to the CME Onset Process?. Solar Physics, 2009, 259, 277-296.	2.5	4
65	Predicting CMEs Using ELEvoHI With STEREOâ€HI Beacon Data. Space Weather, 2021, 19, e2021SW002873.	3.7	3
66	Comparing the Heliospheric Cataloging, Analysis, and Techniques Service (HELCATS) Manual and Automatic Catalogues of Coronal Mass Ejections Using Solar Terrestrial Relations Observatory/Heliospheric Imager (STEREO/HI) Data. Solar Physics, 2022, 297, 1.	2.5	3
67	Observations of Rapid Velocity Variations in the Slow Solar Wind. Solar Physics, 2013, 285, 111-126.	2.5	2
68	A Post-Conjunction Re-Evaluation of the Calibration and Long-term Evolution of the STEREO-A Heliospheric Imagers. Solar Physics, 2022, 297, 1.	2.5	2
69	SCOPE: a coronagraph for operational space weather prediction: phase A/B1 design and breadboarding. , 2019, , .		1
70	From heliophysics to space weather forecasts. Astronomy and Geophysics, 2019, 60, 5.26-5.30.	0.2	0
71	Analysis of signal to noise ratio in coronagraph observations of coronal mass ejections. Journal of Space Weather and Space Climate, 2021, 11, 11.	3.3	0