
Sho Kitano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/233013/publications.pdf Version: 2024-02-01

SHO KITANO

#	Article	IF	CITATIONS
1	Development of Hydrogen-Permeable Metal Support Electrolysis Cells. ACS Applied Energy Materials, 2022, 5, 1385-1389.	5.1	3
2	High strength hydrogels enable dendrite-free Zn metal anodes and high-capacity Zn–MnO ₂ batteries <i>via</i> a modified mechanical suppression effect. Journal of Materials Chemistry A, 2022, 10, 3122-3133.	10.3	17
3	A low-cost and non-corrosive electropolishing strategy for long-life zinc metal anode in rechargeable aqueous battery. Energy Storage Materials, 2022, 46, 223-232.	18.0	12
4	High-corrosion-resistance mechanism of graphitized platelet-type carbon nanofibers in the OER in a concentrated alkaline electrolyte. Journal of Materials Chemistry A, 2022, 10, 8208-8217.	10.3	8
5	Heterointerface Created on Auâ€Cluster‣oaded Unilamellar Hydroxide Electrocatalysts as a Highly Active Site for the Oxygen Evolution Reaction. Advanced Materials, 2022, 34, e2110552.	21.0	36
6	Enhanced Performance of Protonic Solid Oxide Steam Electrolysis Cell of Zr-Rich Side BaZr _{0.6} Ce _{0.2} V _{0.2} O _{3â~Î′} Electrolyte with an Anode Functional Layer. ACS Omega, 2022, 7, 9944-9950.	3.5	4
7	Heterointerface Created on Auâ€Cluster‣oaded Unilamellar Hydroxide Electrocatalysts as a Highly Active Site for the Oxygen Evolution Reaction (Adv. Mater. 16/2022). Advanced Materials, 2022, 34, .	21.0	1
8	Design of anode functional layers for protonic solid oxide electrolysis cells. Journal of Materials Chemistry A, 2022, 10, 15719-15730.	10.3	8
9	La _{0.8} Sr _{0.2} Co _{1-x} Ni <i>_x</i> O _{3-δ} as the Efficient Triple Conductor Air Electrode for Protonic Ceramic Cells. ACS Applied Energy Materials, 2021, 4, 554-563.	5.1	34
10	The effect of an anode functional layer on the steam electrolysis performances of protonic solid oxide cells. Journal of Materials Chemistry A, 2021, 9, 14032-14042.	10.3	21
11	Catalytic Roles and Synergetic Effects of Iron-Group Elements on Monometals and Alloys for Electrochemical Oxidation of Ammonia. Bulletin of the Chemical Society of Japan, 2021, 94, 1292-1299.	3.2	7
12	<i>In Situ</i> Activation of a Manganese Perovskite Oxygen Reduction Catalyst in Concentrated Alkaline Media. Journal of the American Chemical Society, 2021, 143, 6505-6515.	13.7	25
13	Pd nanoparticles on zeolite imidazolide framework-8: Preparation, characterization, and evaluation of fixed-bed hydrogenation activity toward isomeric nitrophenols. Colloids and Interface Science Communications, 2021, 43, 100446.	4.1	2
14	Highly Active and Durable FeNiCo Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts Derived from Fluoride Precursors. ACS Sustainable Chemistry and Engineering, 2021, 9, 9465-9473.	6.7	16
15	Metal/Oxide Heterojunction Boosts Fuel Cell Cathode Reaction at Low Temperatures. Advanced Energy Materials, 2021, 11, 2102025.	19.5	16
16	Slippery Liquid-Infused Porous Surfaces on Aluminum for Corrosion Protection with Improved Self-Healing Ability. ACS Applied Materials & amp; Interfaces, 2021, 13, 45089-45096.	8.0	20
17	Fabrication of superhydrophobic copper metal nanowire surfaces with high thermal conductivity. Applied Surface Science, 2021, 537, 147854.	6.1	17
18	A lithiophilic carbon scroll as a Li metal host with low tortuosity design and "Dead Li―self-cleaning capability. Journal of Materials Chemistry A, 2021, 9, 13332-13343.	10.3	15

Sho Kitano

#	Article	IF	CITATIONS
19	Multiscale design for high-performance glycolic acid electro-synthesis cell: Preparation of nanoscale-IrO2-applied Ti anode and optimization of cell assembling. Catalysis Today, 2020, 351, 12-20.	4.4	13
20	In Situ Activation of Anodized Ni–Fe Alloys for the Oxygen Evolution Reaction in Alkaline Media. ACS Applied Energy Materials, 2020, 3, 12316-12326.	5.1	23
21	Characterization of Dark-Colored Nanoporous Anodic Films on Zinc. Coatings, 2020, 10, 1014.	2.6	5
22	Spinel-Type Metal Oxide Nanoparticles Supported on Platelet-Type Carbon Nanofibers as a Bifunctional Catalyst for Oxygen Evolution Reaction and Oxygen Reduction Reaction. Electrochemistry, 2020, 88, 566-573.	1.4	5
23	Alcoholic Compounds as an Efficient Energy Carrier. Nanostructure Science and Technology, 2019, , 387-417.	0.1	1
24	Impact of Ir-Valence Control and Surface Nanostructure on Oxygen Evolution Reaction over a Highly Efficient Ir–TiO ₂ Nanorod Catalyst. ACS Catalysis, 2019, 9, 6974-6986.	11.2	90
25	Visible light active Bi ₃ TaO ₇ nanosheets for water splitting. Dalton Transactions, 2019, 48, 9284-9290.	3.3	14
26	BiVO4/BiOX (X = F, Cl, Br, I) heterojunctions for degrading organic dye under visible light. Advanced Powder Technology, 2019, 30, 1290-1296.	4.1	30
27	Tailoring widely used ammonia synthesis catalysts for H and N poisoning resistance. Physical Chemistry Chemical Physics, 2019, 21, 5117-5122.	2.8	13
28	Carbon-neutral energy cycles using alcohols. Science and Technology of Advanced Materials, 2018, 19, 142-152.	6.1	29
29	Effects of the structure of the Rh3+ modifier on photocatalytic performances of an Rh3+/TiO2 photocatalyst under irradiation of visible light. Applied Catalysis B: Environmental, 2017, 205, 340-346.	20.2	8
30	Hydrogenation of oxalic acid using light-assisted water electrolysis for the production of an alcoholic compound. Green Chemistry, 2016, 18, 3700-3706.	9.0	26
31	Metal ion-modified TiO2 photocatalysts having controllable oxidative performance under irradiation of visible light. Applied Catalysis A: General, 2016, 521, 202-207.	4.3	13
32	Selective oxidation of alcohols in aqueous suspensions of rhodium ion-modified TiO ₂ photocatalysts under irradiation of visible light. Physical Chemistry Chemical Physics, 2014, 16, 12554-12559.	2.8	36
33	CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media. Scientific Reports, 2014, 4, 5620.	3.3	36
34	Bifunctionality of Rh ³⁺ Modifier on TiO ₂ and Working Mechanism of Rh ³⁺ /TiO ₂ Photocatalyst under Irradiation of Visible Light. Journal of Physical Chemistry C, 2013, 117, 11008-11016.	3.1	67
35	Photocatalytic mineralization of volatile organic compounds over commercial titanium(IV) oxide modified with rhodium(III) ion under visible light irradiation and correlation between physical properties and photocatalytic activity. Catalysis Today, 2011, 164, 404-409.	4.4	10
36	Photocatalytic degradation of 2-propanol over metal-ion-loaded titanium(IV) oxide under visible light irradiation: Effect of physical properties of nano-crystalline titanium(IV) oxide. Applied Catalysis B: Environmental, 2011, 101, 206-211.	20.2	28

Sho Kitano

#	Article	IF	CITATIONS
37	Photocatalytic Degradation of 2-Propanol under Irradiation of Visible Light by Nanocrystalline Titanium(IV) Oxide Modified with Rhodium Ion Using Adsorption Method. Chemistry Letters, 2010, 39, 627-629.	1.3	18
38	Photo-oxidation of nitrogen oxide over titanium(IV) oxide modified with platinum or rhodium chlorides under irradiation of visible light or UV light. Catalysis Today, 2009, 144, 37-41.	4.4	25
39	Brownmillerite-type Ca ₂ Fe _{0.75} Co _{1.25} O ₅ as a Robust Electrocatalyst for Oxygen Evolution Reaction in Neutral Conditions. Sustainable Energy and Fuels, 0, , .	4.9	1