Lichao Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2329532/publications.pdf

Version: 2024-02-01

		304368	315357
51	1,592	22	38
papers	citations	h-index	g-index
F.1	F.1	F.1	1220
51	51	51	1230
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Gas-Mediated Cancer Bioimaging and Therapy. ACS Nano, 2019, 13, 10887-10917.	7.3	206
2	Dual Ratiometric SERS and Photoacoustic Core–Satellite Nanoprobe for Quantitatively Visualizing Hydrogen Peroxide in Inflammation and Cancer. Angewandte Chemie - International Edition, 2021, 60, 7323-7332.	7.2	83
3	Biologically Responsive Plasmonic Assemblies for Second Near-Infrared Window Photoacoustic Imaging-Guided Concurrent Chemo-Immunotherapy. ACS Nano, 2020, 14, 3991-4006.	7.3	78
4	Single Wavelength Laser Excitation Ratiometric NIR-II Fluorescent Probe for Molecule Imaging in Vivo. Analytical Chemistry, 2020, 92, 6111-6120.	3.2	70
5	Singlet Oxygen Generation in Darkâ€Hypoxia by Catalytic Microenvironmentâ€Tailored Nanoreactors for NIRâ€II Fluorescenceâ€Monitored Chemodynamic Therapy. Angewandte Chemie - International Edition, 2021, 60, 15006-15012.	7.2	64
6	Plasmonic-Fluorescent Janus Ag/Ag ₂ S Nanoparticles for <i>In Situ</i> H ₂ O ₂ -Activated NIR-II Fluorescence Imaging. Nano Letters, 2021, 21, 2625-2633.	4.5	62
7	Light-activated gold nanorod vesicles with NIR-II fluorescence and photoacoustic imaging performances for cancer theranostics. Theranostics, 2020, 10, 4809-4821.	4.6	58
8	Asymmetric Core–Shell Gold Nanoparticles and Controllable Assemblies for SERS Ratiometric Detection of MicroRNA. Angewandte Chemie - International Edition, 2021, 60, 12560-12568.	7.2	54
9	Quantitative Photoacoustic Diagnosis and Precise Treatment of Inflammation In Vivo Using Activatable Theranostic Nanoprobe. Advanced Functional Materials, 2020, 30, 2001771.	7.8	50
10	Quantitative Assessment of Copper(II) in Wilson's Disease Based on Photoacoustic Imaging and Ratiometric Surface-Enhanced Raman Scattering. ACS Nano, 2021, 15, 3402-3414.	7.3	50
11	In Vivo Tracking of Cell Viability for Adoptive Natural Killer Cellâ€Based Immunotherapy by Ratiometric NIRâ€II Fluorescence Imaging. Angewandte Chemie - International Edition, 2021, 60, 20888-20896.	7.2	48
12	In Vivo Xâ€ray Triggered Catalysis of H ₂ Generation for Cancer Synergistic Gas Radiotherapy. Angewandte Chemie - International Edition, 2021, 60, 12868-12875.	7.2	47
13	Dyeâ€Sensitized Downconversion Nanoprobes with Emission Beyond 1500 nm for Ratiometric Visualization of Cancer Redox State. Advanced Functional Materials, 2021, 31, 2009942.	7.8	43
14	Structural Transformative Antioxidants for Dualâ€Responsive Antiâ€Inflammatory Delivery and Photoacoustic Inflammation Imaging. Angewandte Chemie - International Edition, 2021, 60, 14458-14466.	7.2	43
15	Nanosized Janus AuNR-Pt Motor for Enhancing NIR-II Photoacoustic Imaging of Deep Tumor and Pt ²⁺ Ion-Based Chemotherapy. ACS Nano, 2022, 16, 7947-7960.	7.3	43
16	Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemo-radiotherapy using hybrid plasmonic-fluorescent assemblies. Nano Research, 2020, 13, 3268-3277.	5.8	39
17	Siteâ€Specific Biomimicry of Antioxidative Melanin Formation and Its Application for Acute Liver Injury Therapy and Imaging. Advanced Materials, 2021, 33, e2102391.	11.1	38
18	Ultrasound-propelled Janus Au NR-mSiO2 nanomotor for NIR-II photoacoustic imaging guided sonodynamic-gas therapy of large tumors. Science China Chemistry, 2021, 64, 2218-2229.	4.2	34

#	Article	IF	CITATIONS
19	<i>In Situ</i> Activatable Ratiometric NIR-II Fluorescence Nanoprobe for Quantitative Detection of H ₂ S in Colon Cancer. Analytical Chemistry, 2021, 93, 9356-9363.	3.2	33
20	Activatable nanoscale metal-organic framework for ratiometric photoacoustic imaging of hydrogen sulfide and orthotopic colorectal cancer in vivo. Science China Chemistry, 2020, 63, 1315-1322.	4.2	31
21	Quantum Dot-Based Sensitization System for Boosted Photon Absorption and Enhanced Second Near-Infrared Luminescence of Lanthanide-Doped Nanoparticle. Analytical Chemistry, 2020, 92, 6094-6102.	3.2	29
22	An Activatable Hybrid Organic–Inorganic Nanocomposite as Early Evaluation System of Therapy Effect. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
23	A NO-Responsive Ratiometric Fluorescent Nanoprobe for Monitoring Drug-Induced Liver Injury in the Second Near-Infrared Window. Analytical Chemistry, 2021, 93, 15279-15287.	3.2	24
24	Highly Controlled Janus Organicâ€Inorganic Nanocomposite as a Versatile Photoacoustic Platform. Angewandte Chemie - International Edition, 2021, 60, 17647-17653.	7.2	22
25	NIRâ€II Photoacoustic Reporter for Biopsyâ€Free and Realâ€Time Assessment of Wilson's Disease. Small, 2021, 17, e2008061.	5.2	22
26	Tracking Cell Viability for Adipose-Derived Mesenchymal Stem Cell-Based Therapy by Quantitative Fluorescence Imaging in the Second Near-Infrared Window. ACS Nano, 2022, 16, 2889-2900.	7.3	22
27	Uncovering a possible role of reactive oxygen species in magnetogenetics. Scientific Reports, 2020, 10, 13096.	1.6	21
28	NIR-II emissive AIEgen photosensitizers enable ultrasensitive imaging-guided surgery and phototherapy to fully inhibit orthotopic hepatic tumors. Journal of Nanobiotechnology, 2021, 19, 419.	4.2	20
29	NIR-II Fluorescent Biodegradable Nanoprobes for Precise Acute Kidney/Liver Injury Imaging and Therapy. Analytical Chemistry, 2021, 93, 13893-13903.	3.2	17
30	Activated molecular probes for enzyme recognition and detection. Theranostics, 2022, 12, 1459-1485.	4.6	17
31	Improving the sensitivity of <i>T</i> ₁ contrast-enhanced MRI and sensitive diagnosing tumors with ultralow doses of MnO octahedrons. Theranostics, 2021, 11, 6966-6982.	4.6	16
32	Neodymium (3+)â€Coordinated Black Phosphorus Quantum Dots with Retrievable NIR/Xâ€Ray Optoelectronic Switching Effect for Antiâ€Glioblastoma. Small, 2022, 18, e2105160.	5.2	15
33	Singlet Oxygen Generation in Darkâ€Hypoxia by Catalytic Microenvironmentâ€Tailored Nanoreactors for NIRâ€II Fluorescenceâ€Monitored Chemodynamic Therapy. Angewandte Chemie, 2021, 133, 15133-15139.	1.6	13
34	Mesoporous radiosensitized nanoprobe for enhanced NIR-II photoacoustic imaging-guided accurate radio-chemotherapy. Nano Research, 2022, 15, 4154-4163.	5.8	13
35	siRNA-Based Carrier-Free System for Synergistic Chemo/Chemodynamic/RNAi Therapy of Drug-Resistant Tumors. ACS Applied Materials & Samp; Interfaces, 2022, 14, 361-372.	4.0	13
36	Transferrin-Conjugated Superparamagnetic Iron Oxide Nanoparticles as In Vivo Magnetic Resonance Imaging Contrast Agents. Journal of Nanoscience and Nanotechnology, 2020, 20, 2018-2024.	0.9	12

#	Article	IF	Citations
37	Superparamagnetic iron oxide nanoparticles modified with dimyristoylphosphatidylcholine and their distribution in the brain after injection in the rat substantia nigra. Materials Science and Engineering C, 2017, 81, 400-406.	3.8	11
38	Subcellular distributions of iron oxide nanoparticles in rat brains affected by different surface modifications. Journal of Biomedical Materials Research - Part A, 2019, 107, 1988-1998.	2.1	11
39	Ratiometric Detection of H ₂ S in Liver Injury by Activated Two-Wavelength Photoacoustic Imaging. Analytical Chemistry, 2022, 94, 10797-10804.	3.2	11
40	Asymmetric Core–Shell Gold Nanoparticles and Controllable Assemblies for SERS Ratiometric Detection of MicroRNA. Angewandte Chemie, 2021, 133, 12668-12676.	1.6	10
41	In Vivo Tracking of Cell Viability for Adoptive Natural Killer Cellâ€Based Immunotherapy by Ratiometric NIRâ€I Fluorescence Imaging. Angewandte Chemie, 2021, 133, 21056-21064.	1.6	10
42	Enhanced cellular uptake of iron oxide nanoparticles modified with 1,2-dimyristoyl-sn-glycero-3-phosphocholine. RSC Advances, 2017, 7, 38001-38007.	1.7	9
43	An Activatable <scp>Nearâ€Infrared</scp> Molecular Chemiluminescence Probe for Visualization of <scp>NQO1</scp> Activity <i>In Vivo</i> ^{â€} . Chinese Journal of Chemistry, 2022, 40, 2400-2406.	2.6	8
44	In-Situ Assembly of Janus Nanoprobe for Cancer Activated NIR-II Photoacoustic Imaging and Enhanced Photodynamic Therapy. Analytical Chemistry, 2022, 94, 10540-10548.	3.2	8
45	In Vivo Xâ€ray Triggered Catalysis of H 2 Generation for Cancer Synergistic Gas Radiotherapy. Angewandte Chemie, 2021, 133, 12978-12985.	1.6	6
46	Highly Controlled Janus Organicâ€Inorganic Nanocomposite as a Versatile Photoacoustic Platform. Angewandte Chemie, 2021, 133, 17788-17794.	1.6	6
47	An Activatable Hybrid Organic–Inorganic Nanocomposite as Early Evaluation System of Therapy Effect. Angewandte Chemie, 2022, 134, .	1.6	6
48	Degraded Hyaluronic Acid-Modified Magnetic Nanoparticles. Journal of Nanomaterials, 2020, 2020, 1-8.	1.5	5
49	Dual Ratiometric SERS and Photoacoustic Core–Satellite Nanoprobe for Quantitatively Visualizing Hydrogen Peroxide in Inflammation and Cancer. Angewandte Chemie, 2021, 133, 7399-7408.	1.6	4
50	Structural Transformative Antioxidants for Dualâ€Responsive Antiâ€Inflammatory Delivery and Photoacoustic Inflammation Imaging. Angewandte Chemie, 2021, 133, 14579-14587.	1.6	4
51	Attachment of streptavidin-modified superparamagnetic iron oxide nanoparticles to the PC-12 cell membrane. Biomedical Materials (Bristol), 2020, 15, 045014.	1.7	4