Shayan Mookherjea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2329361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	2022 Roadmap on integrated quantum photonics. JPhys Photonics, 2022, 4, 012501.	4.6	152
2	A modular fabrication process for thin-film lithium niobate modulators with silicon photonics. JPhys Photonics, 2022, 4, 024001.	4.6	13
3	"Seeing Is Believingâ€â€"In-Depth Analysis by Co-Imaging of Periodically-Poled X-Cut Lithium Niobate Thin Films. Crystals, 2021, 11, 288.	2.2	23
4	Design of high-bandwidth, low-voltage and low-loss hybrid lithium niobate electro-optic modulators. JPhys Photonics, 2021, 3, 012001.	4.6	26
5	Oscilloscopic Capture of Greater-Than-100 GHz, Ultra-Low Power Optical Waveforms Enabled by Integrated Electrooptic Devices. Journal of Lightwave Technology, 2020, 38, 166-173.	4.6	12
6	Poling thin-film x-cut lithium niobate for quasi-phase matching with sub-micrometer periodicity. Journal of Applied Physics, 2020, 127, .	2.5	35
7	High Quality Entangled Photon Pair Generation in Periodically Poled Thin-Film Lithium Niobate Waveguides. Physical Review Letters, 2020, 124, 163603.	7.8	167
8	\$mu\$-Raman Investigations of Periodically-Poled X-Cut Thin-Film Lithium Niobate for Integrated Optics. , 2020, , .		2
9	Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation. Optics Express, 2020, 28, 19669.	3.4	58
10	Progress towards a widely usable integrated silicon photonic photon-pair source. OSA Continuum, 2020, 3, 1398.	1.8	4
11	Prospects for photon-pair generation using silicon microring resonators with two photon absorption and free carrier absorption. OSA Continuum, 2020, 3, 1138.	1.8	9
12	Full-Speed Testing of Silicon Photonic Electro-Optic Modulators from Picowatt-level Scattered Light. , 2020, , .		0
13	Toward 3D Integrated Photonics Including Lithium Niobate Thin Films: A Bridge Between Electronics, Radio Frequency, and Optical Technology. IEEE Nanotechnology Magazine, 2019, 13, 18-33.	1.3	37
14	Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate. APL Photonics, 2019, 4, .	5.7	63
15	Optical diagnostic methods for monitoring the poling of thin-film lithium niobate waveguides. Optics Express, 2019, 27, 12025.	3.4	15
16	Photon pair generation using a silicon photonic hybrid laser. APL Photonics, 2018, 3, .	5.7	10
17	Heuristic Model for Rapid Characterization of a SiP Switch Chip. Journal of Lightwave Technology, 2018, 36, 4680-4690.	4.6	1
18	Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Optics Express, 2018, 26, 23728.	3.4	222

Shayan Mookherjea

#	Article	IF	CITATIONS
19	Design of folded hybrid silicon carbide-lithium niobate waveguides for efficient second-harmonic generation. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 593.	2.1	15
20	Silicon photonic entangled photon-pair and heralded single photon generation with CAR > 12,000 and g^(2)(0) < 0006. Optics Express, 2017, 25, 32995.	3.4	78
21	Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics. Scientific Reports, 2016, 6, 22301.	3.3	90
22	Controlling the spectrum of photons generated on a silicon nanophotonic chip. Nature Communications, 2014, 5, 5489.	12.8	42
23	Electronic control of optical Anderson localization modes. Nature Nanotechnology, 2014, 9, 365-371.	31.5	24
24	Efficient CW Four-Wave Mixing in Silicon-on-Insulator Micro-Rings With Active Carrier Removal. IEEE Photonics Technology Letters, 2013, 25, 1699-1702.	2.5	36
25	Ultra-High-Contrast and Tunable-Bandwidth Filter Using Cascaded High-Order Silicon Microring Filters. IEEE Photonics Technology Letters, 2013, 25, 1543-1546.	2.5	131
26	Quantum light generation on a silicon chip using waveguides and resonators. Optics Express, 2013, 21, 5171.	3.4	11
27	High dynamic range microscope infrared imaging of silicon nanophotonic devices. Optics Letters, 2012, 37, 4705.	3.3	6
28	Large Dispersion of Silicon Directional Couplers Obtained via Wideband Microring Parametric Characterization. IEEE Photonics Technology Letters, 2012, 24, 1242-1244.	2.5	23
29	Telecommunications-band heralded single photons from a silicon nanophotonic chip. Applied Physics Letters, 2012, 100, .	3.3	133
30	Mid-Infrared Wavelength Conversion in Silicon Waveguides Pumped by Silica-Fiber-Based Source. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 612-620.	2.9	8
31	Low-power continuous-wave four-wave mixing in silicon coupled-resonator optical waveguides. Optics Letters, 2011, 36, 2964.	3.3	25
32	Avoiding bandwidth collapse in long chains of coupled optical microresonators. Optics Letters, 2011, 36, 4557.	3.3	8
33	Modeling of Multiband Transmission in Long Silicon Coupled-Resonator Optical Waveguides. IEEE Photonics Technology Letters, 2011, 23, 872-874.	2.5	10
34	Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides. Optics Express, 2010, 18, 26505.	3.4	74
35	Quantitative infrared imaging of silicon-on-insulator microring resonators. Optics Letters, 2010, 35, 784.	3.3	12
36	Waveguide dispersion effects in silicon-on-insulator coupled-resonator optical waveguides. Optics Letters, 2010, 35, 3030.	3.3	36

Shayan Mookherjea

#	Article	IF	CITATIONS
37	Localization in silicon nanophotonic slow-light waveguides. Nature Photonics, 2008, 2, 90-93.	31.4	120
38	The nonlinear microring add-drop filter. Optics Express, 2008, 16, 15130.	3.4	26
39	Multi-slot silicon optical waveguides. , 2008, , .		Ο
40	Effect of disorder on slow light velocity in optical slow-wave structures. Optics Letters, 2007, 32, 289.	3.3	69
41	On-chip microfluidic tuning of an optical microring resonator. Applied Physics Letters, 2006, 88, 111107.	3.3	95
42	On-chip microfluidic tuning of an microring resonator. , 2006, , .		1
43	Dispersion characteristics of coupled-resonator optical waveguides. Optics Letters, 2005, 30, 2406.	3.3	41
44	Mode cycling in microring optical resonators. Optics Letters, 2005, 30, 2751.	3.3	7
45	Semiconductor coupled-resonator optical waveguide laser. Applied Physics Letters, 2004, 84, 3265-3267.	3.3	23
46	A microfluidic 2×2 optical switch. Applied Physics Letters, 2004, 85, 6119-6121.	3.3	76