Michael Gajhede

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2329357/publications.pdf Version: 2024-02-01

MICHAEL CATHEDE

#	Article	IF	CITATIONS
1	Binding of a negative allosteric modulator and competitive antagonist can occur simultaneously at the ionotropic glutamate receptor GluA2. FEBS Journal, 2021, 288, 995-1007.	2.2	9
2	Lipid-bound ApoE3 self-assemble into elliptical disc-shaped particles. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183495.	1.4	3
3	Deconstructing Noncovalent Kelch-like ECH-Associated Protein 1 (Keap1) Inhibitors into Fragments to Reconstruct New Potent Compounds. Journal of Medicinal Chemistry, 2021, 64, 4623-4661.	2.9	30
4	Reversal of ABCG2/BCRP-Mediated Multidrug Resistance by 5,3′,5′-Trihydroxy-3,6,7,4′-Tetramethoxyflavo Isolated from the Australian Desert Plant Eremophila galeata Chinnock. Biomolecules, 2021, 11, 1534.	one 1.8	8
5	Expression, purification and characterization of human proton-coupled oligopeptide transporter 1 hPEPT1. Protein Expression and Purification, 2021, 190, 105990.	0.6	2
6	The Pyrazolo[3,4-d]pyrimidine Derivative, SCO-201, Reverses Multidrug Resistance Mediated by ABCG2/BCRP. Cells, 2020, 9, 613.	1.8	13
7	Molecular Dynamics Simulations Reveal the Proton:Peptide Coupling Mechanism in the Bacterial Proton-Coupled Oligopeptide Transporter YbgH. ACS Omega, 2019, 4, 2040-2046.	1.6	3
8	Molecular architecture of the Jumonji C family histone demethylase KDM5B. Scientific Reports, 2019, 9, 4019.	1.6	16
9	Lysine demethylase inhibition protects pancreatic β cells from apoptosis and improves β-cell function. Molecular and Cellular Endocrinology, 2018, 460, 47-56.	1.6	22
10	Structural Basis of Histone Demethylase KDM6B Histone 3 Lysine 27 Specificity. Biochemistry, 2018, 57, 585-592.	1.2	18
11	Human proton coupled folic acid transporter is a monodisperse oligomer in the lauryl maltose neopentyl glycol solubilized state. Biochemical and Biophysical Research Communications, 2018, 495, 1738-1743.	1.0	6
12	The prototypical proton-coupled oligopeptide transporter YdgR from Escherichia coli facilitates chloramphenicol uptake into bacterial cells. Journal of Biological Chemistry, 2018, 293, 1007-1017.	1.6	23
13	Peptides Derived from Histone 3 and Modified at Position 18 Inhibit Histone Demethylase KDM6 Enzymes. ChemBioChem, 2018, 19, 1817-1822.	1.3	2
14	Several hPepT1-transported drugs are substrates of the Escherichia coli proton-coupled oligopeptide transporter YdgR. Research in Microbiology, 2017, 168, 443-449.	1.0	17
15	Expression, purification and characterization of the human MTA2-RBBP7 complex. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 531-538.	1.1	5
16	Structureâ€Based Design of a New Scaffold for Cellâ€Penetrating Peptidic Inhibitors of the Histone Demethylase PHF8. ChemBioChem, 2017, 18, 1369-1375.	1.3	9
17	The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region. Scientific Reports, 2017, 7, 46145.	1.6	15
18	Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholineâ€Binding Protein as a Structural Surrogate. Basic and Clinical Pharmacology and Toxicology, 2016, 118, 399-407.	1.2	33

MICHAEL GAJHEDE

#	Article	IF	CITATIONS
19	Pharmacology and Structural Analysis of Ligand Binding to the Orthosteric Site of Glutamate-Like GluD2 Receptors. Molecular Pharmacology, 2016, 89, 253-262.	1.0	26
20	Acetylcholine-Binding Protein Engineered to Mimic the <i>α</i> 4- <i>α</i> 4 Binding Pocket in <i>α</i> 4 <i>β</i> 2 Nicotinic Acetylcholine Receptors Reveals Interface Specific Interactions Important for Binding and Activity. Molecular Pharmacology, 2015, 88, 697-707.	1.0	24
21	Engineered α4β2 nicotinic acetylcholine receptors as models for measuring agonist binding and effect at the orthosteric low-affinity α4–α4 interface. Neuropharmacology, 2015, 92, 135-145.	2.0	23
22	Structure and binding properties of a cameloid nanobody raised against KDM5B. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1235-1241.	0.4	6
23	Modulation of α4β2 NACHRs via an extracellular binding site: Structural studies and novel engineered receptors to aid drug discovery. Biochemical Pharmacology, 2015, 97, 623-624.	2.0	ο
24	Molecular Recognition of the Neurotransmitter Acetylcholine by an Acetylcholine Binding Protein Reveals Determinants of Binding to Nicotinic Acetylcholine Receptors. PLoS ONE, 2014, 9, e91232.	1.1	36
25	Structural and Functional Studies of the Modulator NS9283 Reveal Agonist-like Mechanism of Action at α4β2 Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2014, 289, 24911-24921.	1.6	36
26	Two Distinct Allosteric Binding Sites at α4β2 Nicotinic Acetylcholine Receptors Revealed by NS206 and NS9283 Give Unique Insights to Binding Activity-associated Linkage at Cys-loop Receptors. Journal of Biological Chemistry, 2013, 288, 35997-36006.	1.6	40
27	Molecular Determinants of Subtype-selective Efficacies of Cytisine and the Novel Compound NS3861 at Heteromeric Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2013, 288, 2559-2570.	1.6	26
28	Intersubunit Bridge Formation Governs Agonist Efficacy at Nicotinic Acetylcholine α4β2 Receptors. Journal of Biological Chemistry, 2012, 287, 4248-4259.	1.6	42
29	Studies of H3K4me3 demethylation by KDM5B/Jarid1B/PLU1 reveals strong substrate recognition <i>in vitro</i> and identifies 2,4â€pyridineâ€dicarboxylic acid as an <i>in vitro</i> and <i>in cell</i> inhibitor. FEBS Journal, 2012, 279, 1905-1914.	2.2	64
30	Enzyme kinetic studies of histone demethylases KDM4C and KDM6A: Towards understanding selectivity of inhibitors targeting oncogenic histone demethylases. FEBS Letters, 2011, 585, 1951-1956.	1.3	17
31	Targeting Histone Lysine Demethylases by Truncating the Histoneâ€3 Tail to Obtain Selective Substrateâ€Based Inhibitors. Angewandte Chemie - International Edition, 2011, 50, 9100-9103.	7.2	39
32	Inhibitors of histone demethylases. Bioorganic and Medicinal Chemistry, 2011, 19, 3625-3636.	1.4	91