
## **Astley Hastings**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2329125/publications.pdf Version: 2024-02-01



ASTIEV HASTINGS

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Energy crops: current status and future prospects. Global Change Biology, 2006, 12, 2054-2076.                                                                                                | 9.5  | 351       |
| 2  | A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Global Change Biology, 2019, 25, 2530-2543.                           | 9.5  | 343       |
| 3  | Landâ€use change to bioenergy production in <scp>E</scp> urope: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy, 2012, 4, 372-391.                                 | 5.6  | 298       |
| 4  | Food vs. fuel: the use of land for lignocellulosic â€~next generation' energy crops that minimize competition with primary food production. GCB Bioenergy, 2012, 4, 1-19.                     | 5.6  | 240       |
| 5  | Environmental costs and benefits of growing <i>Miscanthus</i> for bioenergy in the <scp>UK</scp> .<br>GCB Bioenergy, 2017, 9, 489-507.                                                        | 5.6  | 183       |
| 6  | The potential for land sparing to offset greenhouse gas emissions from agriculture. Nature Climate Change, 2016, 6, 488-492.                                                                  | 18.8 | 177       |
| 7  | Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC. Frontiers in Plant Science, 2016, 7, 1620.                          | 3.6  | 160       |
| 8  | Progress in upscaling <i>Miscanthus</i> biomass production for the European bioâ€economy with seedâ€based hybrids. GCB Bioenergy, 2017, 9, 6-17.                                              | 5.6  | 156       |
| 9  | The development of MISCANFOR, a new <i>Miscanthus</i> crop growth model: towards more robust yield predictions under different climatic and soil conditions. GCB Bioenergy, 2009, 1, 154-170. | 5.6  | 155       |
| 10 | Future energy potential of <i>Miscanthus</i> in Europe. GCB Bioenergy, 2009, 1, 180-196.                                                                                                      | 5.6  | 139       |
| 11 | Emissions of methane from northern peatlands: a review of management impacts and implications for future management options. Ecology and Evolution, 2016, 6, 7080-7102.                       | 1.9  | 120       |
| 12 | Breeding progress and preparedness for massâ€scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. GCB Bioenergy, 2019, 11, 118-151.        | 5.6  | 116       |
| 13 | The impact of soil salinity on the yield, composition and physiology of the bioenergy grass<br><i>MiscanthusÂ</i> × <i>Âgiganteus</i> . GCB Bioenergy, 2017, 9, 92-104.                       | 5.6  | 106       |
| 14 | The potential of <i>Miscanthus</i> to sequester carbon in soils: comparing field measurements in Carlow, Ireland to model predictions. GCB Bioenergy, 2009, 1, 413-425.                       | 5.6  | 104       |
| 15 | Land use change from C3 grassland to C4 <i>Miscanthus</i> : effects on soil carbon content and estimated mitigation benefit after six years. GCB Bioenergy, 2014, 6, 360-370.                 | 5.6  | 83        |
| 16 | Characterization of flowering time diversity in Miscanthus species. GCB Bioenergy, 2011, 3, 387-400.                                                                                          | 5.6  | 76        |
| 17 | Potential of Miscanthus grasses to provide energy and hence reduce greenhouse gas emissions.<br>Agronomy for Sustainable Development, 2008, 28, 465-472.                                      | 5.3  | 69        |
| 18 | Economic and Environmental Assessment of Seed and Rhizome Propagated Miscanthus in the UK.<br>Frontiers in Plant Science, 2017, 8, 1058.                                                      | 3.6  | 66        |

ASTLEY HASTINGS

| #  | Article                                                                                                                                                                                                                          | IF                | CITATIONS          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 19 | The technical potential of <scp>G</scp> reat <scp>B</scp> ritain to produce ligno ellulosic biomass for bioenergy in current and future climates. GCB Bioenergy, 2014, 6, 108-122.                                               | 5.6               | 64                 |
| 20 | Global change synergies and tradeâ€offs between renewable energy and biodiversity. GCB Bioenergy,<br>2016, 8, 941-951.                                                                                                           | 5.6               | 61                 |
| 21 | Electric and hydrogen buses: Shifting from conventionally fuelled cars in the UK. Transportation<br>Research, Part D: Transport and Environment, 2020, 85, 102350.                                                               | 6.8               | 58                 |
| 22 | Potential impacts on ecosystem services of land use transitions to secondâ€generation bioenergy crops<br>in <scp>GB</scp> . GCB Bioenergy, 2016, 8, 317-333.                                                                     | 5.6               | 56                 |
| 23 | Soil C storage as affected by tillage and straw management: An assessment using field measurements and model predictions. Agriculture, Ecosystems and Environment, 2011, 140, 218-225.                                           | 5.3               | 50                 |
| 24 | Highâ€resolution spatial modelling of greenhouse gas emissions from landâ€use change to energy crops<br>in the United Kingdom. GCB Bioenergy, 2017, 9, 627-644.                                                                  | 5.6               | 47                 |
| 25 | Bioenergy with Carbon Capture and Storage (BECCS): Finding the win–wins for energy, negative emissions and ecosystem services—size matters. GCB Bioenergy, 2020, 12, 586-604.                                                    | 5.6               | 41                 |
| 26 | Sensitivity of crop model predictions to entire meteorological and soil input datasets highlights vulnerability to drought. Environmental Modelling and Software, 2012, 29, 37-43.                                               | 4.5               | 40                 |
| 27 | How does bioenergy compare with other land-based renewable energy sources globally?. GCB<br>Bioenergy, 2013, 5, 513-524.                                                                                                         | 5.6               | 36                 |
| 28 | Electric and hydrogen rail: Potential contribution to net zero in the UK. Transportation Research,<br>Part D: Transport and Environment, 2020, 87, 102523.                                                                       | 6.8               | 34                 |
| 29 | Thermal requirements for seed germination in Miscanthus compared with Switchgrass (Panicum) Tj ETQq1 1 0.:                                                                                                                       | 784314 rgl<br>5.6 | 3T /Overlock<br>33 |
| 30 | Synergies and tradeâ€offs between renewable energy expansion and biodiversity conservation – a<br>crossâ€national multifactor analysis. GCB Bioenergy, 2016, 8, 1191-1200.                                                       | 5.6               | 28                 |
| 31 | Assessing the impact of within crop heterogeneity (â€~patchiness') in young<br><i>Miscanthus</i> Â×Â <i>giganteus</i> fields on economic feasibility and soil carbon sequestration. GCB<br>Bioenergy, 2014, 6, 566-576.          | 5.6               | 27                 |
| 32 | Modeled spatial assessment of biomass productivity and technical potential of<br><i>MiscanthusÂ×Âgiganteus</i> , <i>Panicum virgatum</i> L., and <i>Jatropha</i> on marginal land in<br>China. GCB Bioenergy, 2020, 12, 328-345. | 5.6               | 25                 |
| 33 | Novel Miscanthus Germplasm-Based Value Chains: A Life Cycle Assessment. Frontiers in Plant Science, 2017, 8, 990.                                                                                                                | 3.6               | 24                 |
| 34 | Mitigation potential and environmental impact of centralized versus distributed BECCS with domestic biomass production in Great Britain. GCB Bioenergy, 2019, 11, 1234-1252.                                                     | 5.6               | 23                 |
| 35 | Economic and greenhouse gas costs of <i>Miscanthus</i> supply chains in the <scp>United<br/>Kingdom</scp> . GCB Bioenergy, 2012, 4, 358-363.                                                                                     | 5.6               | 21                 |
| 36 | Projections of global and UK bioenergy potential from <i>MiscanthusÂ×Âgiganteus</i> —Feedstock yield,<br>carbon cycling and electricity generation in the 21st century. GCB Bioenergy, 2020, 12, 287-305.                        | 5.6               | 20                 |

ASTLEY HASTINGS

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Miscanthus. , 2018, , 35-59.                                                                                                                                                                                                          |     | 18        |
| 38 | ELUM: A spatial modelling tool to predict soil greenhouse gas changes from land conversion to bioenergy in the UK. Environmental Modelling and Software, 2016, 84, 458-466.                                                           | 4.5 | 17        |
| 39 | Commercial experience with miscanthus crops: Establishment, yields and environmental observations.<br>GCB Bioenergy, 2020, 12, 510-523.                                                                                               | 5.6 | 17        |
| 40 | Collecting wild Miscanthus germplasm in Asia for crop improvement and conservation in Europe<br>whilst adhering to the guidelines of the United Nations' Convention on Biological Diversity. Annals<br>of Botany, 2019, 124, 591-604. | 2.9 | 13        |
| 41 | UK and China: Will electric vehicle integration meet Paris Agreement Targets?. Transportation Research Interdisciplinary Perspectives, 2020, 8, 100245.                                                                               | 2.7 | 13        |
| 42 | Phasing in electric vehicles: Does policy focusing on operating emission achieve net zero emissions reduction objectives?. Transportation Research, Part A: Policy and Practice, 2021, 152, 100-114.                                  | 4.2 | 13        |
| 43 | Spatiotemporal assessment of farmâ€gate production costs and economic potential of Miscanthus Â×Â<br>giganteus , Panicum virgatum L., and Jatropha grown on marginal land in China. GCB Bioenergy, 2020,<br>12, 310-327.              | 5.6 | 10        |
| 44 | PopFor: A new model for estimating poplar yields. Biomass and Bioenergy, 2020, 134, 105470.                                                                                                                                           | 5.7 | 7         |
| 45 | Uncertainty of modelled bioenergy with carbon capture and storage due to variability of input data.<br>GCB Bioenergy, 2021, 13, 691-707.                                                                                              | 5.6 | 7         |
| 46 | Transportation in a Net Zero World: Transitioning Towards Low Carbon Public Transport. Green Energy and Technology, 2022, , .                                                                                                         | 0.6 | 3         |
| 47 | Low Carbon Public Transport and the Competition with Aviation. Green Energy and Technology, 2022, ,<br>81-90.                                                                                                                         | 0.6 | 2         |
| 48 | Trains. Green Energy and Technology, 2022, , 51-58.                                                                                                                                                                                   | 0.6 | 1         |