Shaoyi Jiang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2329096/shaoyi-jiang-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

85 264 25,430 153 h-index g-index citations papers 266 8.4 27,704 7.32 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
264	Combination of polycarboxybetaine coating and factor XII inhibitor reduces clot formation while preserving normal tissue coagulation during extracorporeal life support. <i>Biomaterials</i> , 2021 , 272, 12077	7 8 ^{15.6}	5
263	High-strength and fibrous capsule-resistant zwitterionic elastomers. Science Advances, 2021, 7,	14.3	26
262	High-Strength and Nonfouling Zwitterionic Triple-Network Hydrogel in Saline Environments. <i>Advanced Materials</i> , 2021 , 33, e2102479	24	15
261	Strong Surface Hydration and Salt Resistant Mechanism of a New Nonfouling Zwitterionic Polymer Based on Protein Stabilizer TMAO. <i>Journal of the American Chemical Society</i> , 2021 , 143, 16786-16795	16.4	18
260	Zwitterionic Nanoconjugate Enables Safe and Efficient Lymphatic Drug Delivery. <i>Nano Letters</i> , 2020 , 20, 4693-4699	11.5	7
259	De novo design of functional zwitterionic biomimetic material for immunomodulation. <i>Science Advances</i> , 2020 , 6, eaba0754	14.3	20
258	Zwitterionic Polymer Conjugated Glucagon-like Peptide-1 for Prolonged Glycemic Control. <i>Bioconjugate Chemistry</i> , 2020 , 31, 1812-1819	6.3	6
257	Enhanced pulmonary systemic delivery of protein drugs via zwitterionic polymer conjugation. Journal of Controlled Release, 2020 , 322, 170-176	11.7	12
256	Nonfouling Surfaces 2020 , 507-513		1
255	Strong Hydration at the Poly(ethylene glycol) Brush/Albumin Solution Interface. <i>Langmuir</i> , 2020 , 36, 2030-2036	4	14
254	Zwitterionic carboxybetaine polymers extend the shelf-life of human platelets. <i>Acta Biomaterialia</i> , 2020 , 109, 51-60	10.8	10
253	Elucidating Molecular Design Principles for Charge-Alternating Peptides. <i>Biomacromolecules</i> , 2020 , 21, 435-443	6.9	5
252	Surface hydration for antifouling and bio-adhesion. <i>Chemical Science</i> , 2020 , 11, 10367-10377	9.4	39
251	Zwitterionic Peptide Cloak Mimics Protein Surfaces for Protein Protection. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 22378-22381	16.4	11
250	Zwitterionic Peptide Cloak Mimics Protein Surfaces for Protein Protection. <i>Angewandte Chemie</i> , 2020 , 132, 22564-22567	3.6	1
249	Photoreactive Carboxybetaine Copolymers Impart Biocompatibility and Inhibit Plasticizer Leaching on Polyvinyl Chloride. <i>ACS Applied Materials & Emp; Interfaces</i> , 2020 , 12, 41026-41037	9.5	8
248	Trimethylamine -oxide-derived zwitterionic polymers: A new class of ultralow fouling bioinspired materials. <i>Science Advances</i> , 2019 , 5, eaaw9562	14.3	81

(2018-2019)

247	Zwitterionic poly-carboxybetaine coating reduces artificial lung thrombosis in sheep and rabbits. <i>Acta Biomaterialia</i> , 2019 , 92, 71-81	10.8	17
246	Protecting Enzymatic Activity via Zwitterionic Nanocapsulation for the Removal of Phenol Compound from Wastewater. <i>Langmuir</i> , 2019 , 35, 1858-1863	4	22
245	Zwitterionic Hydrogels Based on a Degradable Disulfide Carboxybetaine Cross-Linker. <i>Langmuir</i> , 2019 , 35, 1864-1871	4	18
244	real-time tracing of hierarchical targeting nanostructures in drug resistant tumors using diffuse fluorescence tomography. <i>Chemical Science</i> , 2019 , 10, 7878-7886	9.4	12
243	Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel. <i>Nature Medicine</i> , 2019 , 25, 1566-1575	50.5	85
242	Zwitterionic Interfaces: Concepts and Emerging Applications Special Issue. <i>Langmuir</i> , 2019 , 35, 1055	4	4
241	Nanoscavenger provides long-term prophylactic protection against nerve agents in rodents. <i>Science Translational Medicine</i> , 2019 , 11,	17.5	39
240	Proactively Reducing Anti-Drug Antibodies via Immunomodulatory Bioconjugation. <i>Angewandte Chemie</i> , 2019 , 131, 2455-2458	3.6	
239	Proactively Reducing Anti-Drug Antibodies via Immunomodulatory Bioconjugation. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2433-2436	16.4	6
238	Absolute Orientations of Water Molecules at Zwitterionic Polymer Interfaces and Interfacial Dynamics after Salt Exposure. <i>Langmuir</i> , 2019 , 35, 1327-1334	4	36
237	Evaluating the Effect of Shear Stress on Graft-To Zwitterionic Polycarboxybetaine Coating Stability Using a Flow Cell. <i>Langmuir</i> , 2019 , 35, 1984-1988	4	8
236	Ultralow Fouling and Functionalizable Surface Chemistry Based on Zwitterionic Carboxybetaine Random Copolymers. <i>Langmuir</i> , 2019 , 35, 1544-1551	4	40
235	Protein Encapsulation: Zwitterionic Nanocages Overcome the Efficacy Loss of Biologic Drugs (Adv. Mater. 14/2018). <i>Advanced Materials</i> , 2018 , 30, 1870101	24	2
234	Zwitterionic Nanocages Overcome the Efficacy Loss of Biologic Drugs. <i>Advanced Materials</i> , 2018 , 30, e1705728	24	46
233	Mitigation of Inflammatory Immune Responses with Hydrophilic Nanoparticles. <i>Angewandte Chemie</i> , 2018 , 130, 4617-4621	3.6	7
232	Mitigation of Inflammatory Immune Responses with Hydrophilic Nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 4527-4531	16.4	52
231	Polypeptides with High Zwitterion Density for Safe and Effective Therapeutics. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7743-7747	16.4	48
230	Polypeptides with High Zwitterion Density for Safe and Effective Therapeutics. <i>Angewandte Chemie</i> , 2018 , 130, 7869-7873	3.6	8

229	Self-Healing Zwitterionic Microgels as a Versatile Platform for Malleable Cell Constructs and Injectable Therapies. <i>Advanced Materials</i> , 2018 , 30, e1803087	24	59
228	Effect of Surface Hydration on Antifouling Properties of Mixed Charged Polymers. <i>Langmuir</i> , 2018 , 34, 6538-6545	4	40
227	Classifying antimicrobial and multifunctional peptides with Bayesian network models. <i>Peptide Science</i> , 2018 , 110, e24079	3	8
226	Revealing the Immunogenic Risk of Polymers. Angewandte Chemie - International Edition, 2018, 57, 138	73 <i>6</i> 138	37 <i>6</i> 7
225	A Chromatin-Mimetic Nanomedicine for Therapeutic Tolerance Induction. ACS Nano, 2018, 12, 12004-1	2 0 647	7
224	Self-Healing Zwitterionic Microgel Constructs: Self-Healing Zwitterionic Microgels as a Versatile Platform for Malleable Cell Constructs and Injectable Therapies (Adv. Mater. 39/2018). <i>Advanced Materials</i> , 2018 , 30, 1870291	24	5
223	Expressing a Monomeric Organophosphate Hydrolase as an EK Fusion Protein. <i>Bioconjugate Chemistry</i> , 2018 , 29, 3686-3690	6.3	7
222	Zwitterlation mitigates protein bioactivity loss over PEGylation. <i>Chemical Science</i> , 2018 , 9, 8561-8566	9.4	19
221	Revealing the Immunogenic Risk of Polymers. <i>Angewandte Chemie</i> , 2018 , 130, 14069-14072	3.6	4
220	Achieving Ultralow Fouling under Ambient Conditions via Surface-Initiated ARGET ATRP of Carboxybetaine. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 9255-9259	9.5	62
219	Sterilization, hydration-dehydration and tube fabrication of zwitterionic hydrogels. <i>Biointerphases</i> , 2017 , 12, 02C411	1.8	4
218	A Coating-Free Nonfouling Polymeric Elastomer. <i>Advanced Materials</i> , 2017 , 29, 1700617	24	50
217	Preface to the Tribute to Keith E. Gubbins, Pioneer in the Theory of Liquids Special Issue. <i>Langmuir</i> , 2017 , 33, 11095-11101	4	3
216	Poly(ectoine) Hydrogels Resist Nonspecific Protein Adsorption. <i>Langmuir</i> , 2017 , 33, 11264-11269	4	15
215	Paper Sensor Coated with a Poly(carboxybetaine)-Multiple DOPA Conjugate via Dip-Coating for Biosensing in Complex Media. <i>Analytical Chemistry</i> , 2017 , 89, 10999-11004	7.8	35
214	Redefining the Protein-Protein Interface: Coarse Graining and Combinatorics for an Improved Understanding of Amino Acid Contributions to the Protein-Protein Binding Affinity. <i>Langmuir</i> , 2017 , 33, 11511-11517	4	1
213	Sensitive and Quantitative Detection of Anti-Poly(ethylene glycol) (PEG) Antibodies by Methoxy-PEG-Coated Surface Plasmon Resonance Sensors. <i>Analytical Chemistry</i> , 2017 , 89, 8217-8222	7.8	15
212	Stable and Functionalizable Quantum Dots with a Thin Zwitterionic Carboxybetaine Layer. <i>Langmuir</i> , 2017 , 33, 8784-8789	4	9

(2015-2016)

211	Harnessing isomerization-mediated manipulation of nonspecific cell/matrix interactions to reversibly trigger and suspend stem cell differentiation. <i>Chemical Science</i> , 2016 , 7, 333-338	9.4	27
210	Low-fouling electrospun PLLA films modified with zwitterionic poly(sulfobetaine methacrylate)-catechol conjugates. <i>Acta Biomaterialia</i> , 2016 , 40, 92-99	10.8	39
209	Hierarchical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma. <i>Nature Communications</i> , 2016 , 7, 13437	17.4	108
208	Development of antithrombotic nanoconjugate blocking integrin 🏻 🗗 - collagen interactions. <i>Scientific Reports</i> , 2016 , 6, 26292	4.9	4
207	Zwitterionic polymer-protein conjugates reduce polymer-specific antibody response. <i>Nano Today</i> , 2016 , 11, 285-291	17.9	65
206	Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ. <i>Acta Biomaterialia</i> , 2016 , 40, 6-15	10.8	110
205	Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation. <i>Journal of Controlled Release</i> , 2016 , 244, 184-193	11.7	319
204	Multimodal, Biomaterial-Focused Anticoagulation via Superlow Fouling Zwitterionic Functional Groups Coupled with Anti-Platelet Nitric Oxide Release. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500640	6 ^{4.6}	30
203	Directed neural stem cell differentiation on polyaniline-coated high strength hydrogels. <i>Materials Today Chemistry</i> , 2016 , 1-2, 15-22	6.2	32
202	Ultra-low fouling and high antibody loading zwitterionic hydrogel coatings for sensing and detection in complex media. <i>Acta Biomaterialia</i> , 2016 , 40, 31-37	10.8	67
201	Achieving low-fouling surfaces with oppositely charged polysaccharides via LBL assembly. <i>Acta Biomaterialia</i> , 2016 , 40, 16-22	10.8	17
200	Butyrylcholinesterase nanocapsule as a long circulating bioscavenger with reduced immune response. <i>Journal of Controlled Release</i> , 2016 , 230, 73-8	11.7	32
199	Hierarchical design of a polymeric nanovehicle for efficient tumor regression and imaging. <i>Nanoscale</i> , 2016 , 8, 9318-27	7.7	8
198	Superhydrophilicity and spontaneous spreading on zwitterionic surfaces: carboxybetaine and sulfobetaine. <i>RSC Advances</i> , 2016 , 6, 24827-24834	3.7	33
197	Stealth surface modification of surface-enhanced Raman scattering substrates for sensitive and accurate detection in protein solutions. <i>ACS Nano</i> , 2015 , 9, 2668-76	16.7	75
196	Functionalized plasmonic nanostructure arrays for direct and accurate mapping extracellular pH of living cells in complex media using SERS. <i>Biosensors and Bioelectronics</i> , 2015 , 73, 202-207	11.8	35
195	Probing the Surface Hydration of Nonfouling Zwitterionic and PEG Materials in Contact with Proteins. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 16881-8	9.5	171
194	Probing the Surface Hydration of Nonfouling Zwitterionic and Poly(ethylene glycol) Materials with Isotopic Dilution Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 8775-8780	3.8	54

193	EKylation: Addition of an Alternating-Charge Peptide Stabilizes Proteins. <i>Biomacromolecules</i> , 2015 , 16, 3357-61	6.9	37
192	Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 12046-51	11.5	196
191	Thermoresponsive self-assembled NiPAm-zwitterion copolymers. <i>Polymer Chemistry</i> , 2015 , 6, 1066-10	77 4.9	38
190	Molecular understanding and design of zwitterionic materials. <i>Advanced Materials</i> , 2015 , 27, 15-26	24	501
189	Brazilin inhibits amyloid Eprotein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity. <i>Scientific Reports</i> , 2015 , 5, 7992	4.9	96
188	Zwitterionische Polymere mit antimikrobiellen und Nonfouling-Eigenschaften. <i>Angewandte Chemie</i> , 2014 , 126, 1774-1782	3.6	19
187	Difference of carboxybetaine and oligo(ethylene glycol) moieties in altering hydrophobic interactions: a molecular simulation study. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 189-94	3.4	26
186	Chemical insights into dodecylamine spore lethal germination. <i>Chemical Science</i> , 2014 , 5, 3320-3324	9.4	4
185	Reversibly switchable polymer with cationic/zwitterionic/anionic behavior through synergistic protonation and deprotonation. <i>Chemical Science</i> , 2014 , 5, 200-205	9.4	71
184	Influence of Charged Groups on the Properties of Zwitterionic Moieties: A Molecular Simulation Study. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 7630-7637	3.4	74
183	Differences in cationic and anionic charge densities dictate zwitterionic associations and stimuli responses. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 6956-62	3.4	93
182	A Green Chemistry-Oriented Sporicidal Cocktail. ACS Sustainable Chemistry and Engineering, 2014, 2, 17	′3 8. ∄73	38
181	One-step dip coating of zwitterionic sulfobetaine polymers on hydrophobic and hydrophilic surfaces. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 6664-71	9.5	101
180	Integrated antimicrobial and nonfouling zwitterionic polymers. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 1746-54	16.4	426
179	A robust graft-to strategy to form multifunctional and stealth zwitterionic polymer-coated mesoporous silica nanoparticles. <i>Biomacromolecules</i> , 2014 , 15, 1845-51	6.9	54
178	Cross-linked carboxybetaine SAMs enable nanoparticles with remarkable stability in complex media. <i>Langmuir</i> , 2014 , 30, 2522-9	4	16
177	Zwitterionic fusion in hydrogels and spontaneous and time-independent self-healing under physiological conditions. <i>Biomaterials</i> , 2014 , 35, 3926-33	15.6	105
176	Achieving One-step Surface Coating of Highly Hydrophilic Poly(Carboxybetaine Methacrylate) Polymers on Hydrophobic and Hydrophilic Surfaces. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1400071	4.6	63

175	In Situ Probing of the Surface Hydration of Zwitterionic Polymer Brushes: Structural and Environmental Effects. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 15840-15845	3.8	97
174	Poly(carboxybetaine) nanomaterials enable long circulation and prevent polymer-specific antibody production. <i>Nano Today</i> , 2014 , 9, 10-16	17.9	122
173	Biologically inspired stealth peptide-capped gold nanoparticles. <i>Langmuir</i> , 2014 , 30, 1864-70	4	56
172	Cellulose paper sensors modified with zwitterionic poly(carboxybetaine) for sensing and detection in complex media. <i>Analytical Chemistry</i> , 2014 , 86, 2871-5	7.8	63
171	Restraint of the Differentiation of Mesenchymal Stem Cells by a Nonfouling Zwitterionic Hydrogel. <i>Angewandte Chemie</i> , 2014 , 126, 12943-12948	3.6	9
170	Restraint of the differentiation of mesenchymal stem cells by a nonfouling zwitterionic hydrogel. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12729-34	16.4	50
169	Fluorescent porous silicon biological probes with high quantum efficiency and stability. <i>Optics Express</i> , 2014 , 22, 29996-30003	3.3	5
168	Engineering buffering and hydrolytic or photolabile charge shifting in a polycarboxybetaine ester gene delivery platform. <i>Biomacromolecules</i> , 2013 , 14, 1587-93	6.9	39
167	Surface initiated atom transfer radical polymerization grafting of sodium styrene sulfonate from titanium and silicon substrates. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2013 , 31, 6F103	2.9	5
166	In situ controlled growth of well-dispersed Au nanoparticles inside the channels of SBA-15 using a simple, bio-inspired method for surface-enhanced Raman spectroscopy. <i>RSC Advances</i> , 2013 , 3, 10154	3.7	12
165	Effect of carbon spacer length on zwitterionic carboxybetaines. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 1357-66	3.4	77
164	Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted human plasma. <i>Biosensors and Bioelectronics</i> , 2013 , 42, 100-5	11.8	38
163	Directly functionalizable surface platform for protein arrays in undiluted human blood plasma. <i>Analytical Chemistry</i> , 2013 , 85, 1447-53	7.8	35
162	Hydrolytic cationic ester microparticles for highly efficient DNA vaccine delivery. <i>Small</i> , 2013 , 9, 3439-4	411	25
161	Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. <i>Nature Biotechnology</i> , 2013 , 31, 553-6	44.5	641
160	Screening nonspecific interactions of peptides without background interference. <i>Biomaterials</i> , 2013 , 34, 1871-7	15.6	24
159	Blood-Inert Surfaces via Ion-Pair Anchoring of Zwitterionic Copolymer Brushes in Human Whole Blood. <i>Advanced Functional Materials</i> , 2013 , 23, 1100-1110	15.6	125
158	Divalent cation-mediated polysaccharide interactions with zwitterionic surfaces. <i>Biomaterials</i> , 2012 , 33, 2001-6	15.6	45

157	Interactions of alginate-producing and -deficient Pseudomonas aeruginosa with zwitterionic polymers. <i>Biomaterials</i> , 2012 , 33, 3626-31	15.6	25
156	Direct cell encapsulation in biodegradable and functionalizable carboxybetaine hydrogels. <i>Biomaterials</i> , 2012 , 33, 5706-12	15.6	75
155	Controlled hierarchical architecture in surface-initiated zwitterionic polymer brushes with structurally regulated functionalities. <i>Advanced Materials</i> , 2012 , 24, 1834-7	24	89
154	Functional Optical Imaging-based Biosensors Characterize Zwitterionic Coatings on SiO2 for Cancer Biomarker Detection 2012 , 20-42		
153	Two-layer architecture using atom transfer radical polymerization for enhanced sensing and detection in complex media. <i>Biomacromolecules</i> , 2012 , 13, 4049-56	6.9	18
152	Sequence, structure, and function of peptide self-assembled monolayers. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6000-5	16.4	186
151	Dry film refractive index as an important parameter for ultra-low fouling surface coatings. <i>Biomacromolecules</i> , 2012 , 13, 589-93	6.9	34
150	Superhydrophilic zwitterionic polymers stabilize liposomes. <i>Langmuir</i> , 2012 , 28, 11625-32	4	81
149	Improved mechanical properties of zwitterionic hydrogels with hydroxyl groups. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 5766-70	3.4	22
148	Suppressing surface reconstruction of superhydrophobic PDMS using a superhydrophilic zwitterionic polymer. <i>Biomacromolecules</i> , 2012 , 13, 1683-7	6.9	80
147	Decoding nonspecific interactions from nature. <i>Chemical Science</i> , 2012 , 3, 3488	9.4	74
146	The effect of lightly crosslinked poly(carboxybetaine) hydrogel coating on the performance of sensors in whole blood. <i>Biomaterials</i> , 2012 , 33, 7945-51	15.6	63
145	Synchronizing nonfouling and antimicrobial properties in a zwitterionic hydrogel. <i>Biomaterials</i> , 2012 , 33, 8928-33	15.6	101
144	Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. <i>Nano Today</i> , 2012 , 7, 404-413	17.9	221
143	Role of nonspecific interactions in molecular chaperones through model-based bioinformatics. <i>Biophysical Journal</i> , 2012 , 103, 2484-91	2.9	6
142	Simple and robust approach for passivating and functionalizing surfaces for use in complex media. <i>Langmuir</i> , 2012 , 28, 9707-13	4	29
141	Zwitterionic polymer-based platform with two-layer architecture for ultra low fouling and high protein loading. <i>Analytical Chemistry</i> , 2012 , 84, 3440-5	7.8	79
140	High viability of cells encapsulated in degradable poly(carboxybetaine) hydrogels. <i>Langmuir</i> , 2012 , 28, 17778-84	4	25

(2011-2012)

139	Softer zwitterionic nanogels for longer circulation and lower splenic accumulation. <i>ACS Nano</i> , 2012 , 6, 6681-6	16.7	170
138	Internal architecture of zwitterionic polymer brushes regulates nonfouling properties. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 1003-7	4.8	37
137	Reversibly Switching the Function of a Surface between Attacking and Defending against Bacteria. <i>Angewandte Chemie</i> , 2012 , 124, 2656-2659	3.6	18
136	Reversibly switching the function of a surface between attacking and defending against bacteria. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 2602-5	16.4	205
135	Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. <i>Nature Chemistry</i> , 2011 , 4, 59-63	17.6	425
134	Local and bulk hydration of zwitterionic glycine and its analogues through molecular simulations. Journal of Physical Chemistry B, 2011 , 115, 660-7	3.4	57
133	Photoiniferter-Mediated Polymerization of Zwitterionic Carboxybetaine Monomers for Low-Fouling and Functionalizable Surface Coatings. <i>Macromolecules</i> , 2011 , 44, 9213-9220	5.5	80
132	Thermodynamics of Water Stabilization of Carboxybetaine Hydrogels from Molecular Dynamics Simulations. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 1757-1760	6.4	16
131	Surface Plasmon Resonance Biosensor for Determination of Tetrodotoxin: Prevalidation Study. Journal of AOAC INTERNATIONAL, 2011 , 94, 596-604	1.7	10
130	Tetrodotoxin Detection by a Surface Plasmon Resonance Sensor in Pufferfish Matrices and Urine. Journal of Sensors, 2011 , 2011, 1-10	2	21
129	Uniform zwitterionic polymer hydrogels with a nonfouling and functionalizable crosslinker using photopolymerization. <i>Biomaterials</i> , 2011 , 32, 6893-9	15.6	100
128	Single nonfouling hydrogels with mechanical and chemical functionality gradients. <i>Biomaterials</i> , 2011 , 32, 8456-61	15.6	27
127	A Thermoresponsive Antimicrobial Wound Dressing Hydrogel Based on a Cationic Betaine Ester. <i>Advanced Functional Materials</i> , 2011 , 21, 4028-4034	15.6	90
126	Manipulating Sticky and Non-Sticky Properties in a Single Material. <i>Angewandte Chemie</i> , 2011 , 123, 622	6 ₃ 6228	3 ₇
125	Manipulating sticky and non-sticky properties in a single material. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 6102-4	16.4	50
124	Zwitterionic poly(carboxybetaine) hydrogels for glucose biosensors in complex media. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 2454-9	11.8	119
123	Molecular dynamics simulation study of ion interactions with zwitterions. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 8358-63	3.4	63
122	Carboxybetaine methacrylate polymers offer robust, long-term protection against cell adhesion. Langmuir, 2011 , 27, 10800-4	4	19

121	Water Mobility: A Bridge between the Hofmeister Series of Ions and the Friction of Zwitterionic Surfaces in Aqueous Environments. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 15525-15531	3.8	17
120	Understanding three hydration-dependent transitions of zwitterionic carboxybetaine hydrogel by molecular dynamics simulations. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 11575-80	3.4	19
119	Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance. <i>Biomaterials</i> , 2011 , 32, 4604-8	15.6	100
118	Functionalizable and nonfouling zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker. <i>Biomaterials</i> , 2011 , 32, 961-8	15.6	125
117	Chaotrope vs. kosmotrope: which one has lower friction?. <i>Journal of Chemical Physics</i> , 2011 , 135, 15470	23.9	4
116	Modulation of barnacle (Balanus amphitrite Darwin) cyprid settlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings. <i>Biofouling</i> , 2010 , 26, 673-83	3.3	92
115	Functionalizable and ultrastable zwitterionic nanogels. <i>Langmuir</i> , 2010 , 26, 6883-6	4	65
114	Integrated antimicrobial and nonfouling hydrogels to inhibit the growth of planktonic bacterial cells and keep the surface clean. <i>Langmuir</i> , 2010 , 26, 10425-8	4	100
113	Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. <i>Analytical Chemistry</i> , 2010 , 82, 1905-10	7.8	87
112	Difference in hydration between carboxybetaine and sulfobetaine. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 16625-31	3.4	158
111	Nonfouling Polyampholytes from an Ion-pair Comonomer with Biomimetic Adhesive Groups. <i>Macromolecules</i> , 2010 , 43, 14-16	5.5	63
110	Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels. <i>Langmuir</i> , 2010 , 26, 14793-8	4	93
109	Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. <i>Advanced Materials</i> , 2010 , 22, 920-32	24	1480
108	Nanoparticles for Drug Delivery Prepared from Amphiphilic PLGA Zwitterionic Block Copolymers with Sharp Contrast in Polarity between Two Blocks. <i>Angewandte Chemie</i> , 2010 , 122, 3859-3864	3.6	31
107	Nanoparticles for drug delivery prepared from amphiphilic PLGA zwitterionic block copolymers with sharp contrast in polarity between two blocks. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 3771-6	16.4	152
106	pH responsive properties of non-fouling mixed-charge polymer brushes based on quaternary amine and carboxylic acid monomers. <i>Biomaterials</i> , 2010 , 31, 2919-25	15.6	140
105	Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. <i>Biomaterials</i> , 2010 , 31, 1486-92	15.6	157
104	Mediating high levels of gene transfer without cytotoxicity via hydrolytic cationic ester polymers. <i>Biomaterials</i> , 2010 , 31, 4186-93	15.6	29

(2008-2010)

103	Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-l-alanine linkages. <i>Biomaterials</i> , 2010 , 31, 658.	2- § 5.6	105
102	Ultra-low fouling and functionalizable zwitterionic coatings grafted onto SiO2 via a biomimetic adhesive group for sensing and detection in complex media. <i>Biosensors and Bioelectronics</i> , 2010 , 25, 22	276 ⁻¹ 82	88
101	Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. <i>Biomaterials</i> , 2009 , 30, 5234-40	15.6	420
100	Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum. <i>Biomaterials</i> , 2009 , 30, 5617-21	15.6	197
99	Ultra-low fouling peptide surfaces derived from natural amino acids. <i>Biomaterials</i> , 2009 , 30, 5892-6	15.6	217
98	Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging. <i>Analytical and Bioanalytical Chemistry</i> , 2009 , 393, 1157-63	4.4	86
97	Direct detection of carcinoembryonic antigen autoantibodies in clinical human serum samples using a surface plasmon resonance sensor. <i>Colloids and Surfaces B: Biointerfaces</i> , 2009 , 70, 1-6	6	58
96	Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasmamaterial selection and protein immobilization optimization. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 1924-30	11.8	147
95	Comparative study of SPR and ELISA methods based on analysis of CD166/ALCAM levels in cancer and control human sera. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 2143-8	11.8	70
94	Novel zwitterionic-polymer-coated silica nanoparticles. <i>Langmuir</i> , 2009 , 25, 3196-9	4	79
94	Novel zwitterionic-polymer-coated silica nanoparticles. <i>Langmuir</i> , 2009 , 25, 3196-9 Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings. <i>Langmuir</i> , 2009 , 25, 13516-21	4	79
	Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings.		
93	Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings. Langmuir, 2009, 25, 13516-21 Pursuing "zero" protein adsorption of poly(carboxybetaine) from undiluted blood serum and	4	212
93 92	Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings. Langmuir, 2009, 25, 13516-21 Pursuing "zero" protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir, 2009, 25, 11911-6	4	212
93 92 91	Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings. Langmuir, 2009, 25, 13516-21 Pursuing "zero" protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir, 2009, 25, 11911-6 Hydration of "nonfouling" functional groups. Journal of Physical Chemistry B, 2009, 113, 197-201 Zwitterionic hydrogels: an in vivo implantation study. Journal of Biomaterials Science, Polymer	4 4 3.4	21226783
93 92 91 90	Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings. Langmuir, 2009, 25, 13516-21 Pursuing "zero" protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir, 2009, 25, 11911-6 Hydration of "nonfouling" functional groups. Journal of Physical Chemistry B, 2009, 113, 197-201 Zwitterionic hydrogels: an in vivo implantation study. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 1845-59 Nonfouling Polymer Brushes via Surface-Initiated, Two-Component Atom Transfer Radical	4 3·4 3·5	2122678392
93 92 91 90 89	Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings. Langmuir, 2009, 25, 13516-21 Pursuing "zero" protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir, 2009, 25, 11911-6 Hydration of "nonfouling" functional groups. Journal of Physical Chemistry B, 2009, 113, 197-201 Zwitterionic hydrogels: an in vivo implantation study. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 1845-59 Nonfouling Polymer Brushes via Surface-Initiated, Two-Component Atom Transfer Radical Polymerization. Macromolecules, 2008, 41, 4216-4219 Ultralow fouling zwitterionic polymers grafted from surfaces covered with an initiator via an	4 3·4 3·5 5·5	212 267 83 92 160

85	Hybrid surface platform for the simultaneous detection of proteins and DNAs using a surface plasmon resonance imaging sensor. <i>Analytical Chemistry</i> , 2008 , 80, 4231-6	7.8	43
84	Surface Plasmon Resonance (SPR) Sensors for the Detection of Bacterial Pathogens 2008 , 83-108		13
83	Origin of repulsive force and structure/dynamics of interfacial water in OEG-protein interactions: a molecular simulation study. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 5539-44	3.6	92
82	Nonfouling behavior of polycarboxybetaine-grafted surfaces: structural and environmental effects. <i>Biomacromolecules</i> , 2008 , 9, 2686-92	6.9	212
81	Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. <i>Analytical Chemistry</i> , 2008 , 80, 7894	-9 70 8	337
80	Physical, chemical, and chemical-physical double network of zwitterionic hydrogels. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 5327-32	3.4	81
79	Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. <i>Langmuir</i> , 2008 , 24, 10358-64	4	276
78	Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. <i>Biomacromolecules</i> , 2008 , 9, 1357-61	6.9	637
77	Reduced foreign body reaction to implanted biomaterials by surface treatment with oriented osteopontin. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2008 , 19, 821-35	3.5	44
76	A molecular simulation study of methylated and hydroxyl sugar-based self-assembled monolayers: Surface hydration and resistance to protein adsorption. <i>Journal of Chemical Physics</i> , 2008 , 129, 215101	3.9	27
75	Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. <i>Biomaterials</i> , 2008 , 29, 4592-	· 7 15.6	208
74	Adhesion of MC3T3-E1 cells to bone sialoprotein and bone osteopontin specifically bound to collagen I. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 86, 779-87	5.4	27
73	pH-induced conformation changes of adsorbed vitronectin maximize its bovine aortic endothelial cell binding ability. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 87, 505-14	5.4	16
7 ²	A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angewandte Chemie - International Edition, 2008, 47, 8831-4	16.4	279
71	An New Avenue to Nonfouling Materials. <i>Advanced Materials</i> , 2008 , 20, 335-338	24	342
70	A Switchable Biocompatible Polymer Surface with Self-Sterilizing and Nonfouling Capabilities. <i>Angewandte Chemie</i> , 2008 , 120, 8963-8966	3.6	44
69	The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. <i>Biomaterials</i> , 2008 , 29, 4719-25	15.6	77
68	MC3T3-E1 cell adhesion to hydroxyapatite with adsorbed bone sialoprotein, bone osteopontin, and bovine serum albumin. <i>Colloids and Surfaces B: Biointerfaces</i> , 2008 , 64, 236-47	6	53

67	Blood compatibility of surfaces with superlow protein adsorption. <i>Biomaterials</i> , 2008 , 29, 4285-91	15.6	385
66	Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2007 , 18, 1415-27	3.5	157
65	Stepwise Assembly of Fibrin Bilayers on Self-Assembled Monolayers of Alkanethiolates: Influence of Surface Chemistry. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 8504-8508	3.8	13
64	Endothelial cell migration on surface-density gradients of fibronectin, VEGF, or both proteins. <i>Langmuir</i> , 2007 , 23, 11168-73	4	125
63	Controlling the orientation of bone osteopontin via its specific binding with collagen I to modulate osteoblast adhesion. <i>Journal of Biomedical Materials Research - Part A</i> , 2007 , 80, 102-10	5.4	29
62	Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. <i>Biomaterials</i> , 2007 , 28, 4192-9	15.6	571
61	Stop band shift based chemical sensing with three-dimensional opal and inverse opal structures. <i>Sensors and Actuators B: Chemical</i> , 2007 , 124, 452-458	8.5	44
60	Molecular simulation studies of nanoscale friction between phosphorylcholine self-assembled monolayer surfaces: correlation between surface hydration and friction. <i>Journal of Chemical Physics</i> , 2007 , 127, 084708	3.9	10
59	Capillary Differentiation of Endothelial Cells on Microgrooved Surfaces. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 14602-14606	3.8	5
58	Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance. <i>Biomacromolecules</i> , 2007 , 8, 122-7	6.9	126
57	Modulating cell adhesion and spreading by control of FnIII7-10 orientation on charged self-assembled monolayers (SAMs) of alkanethiolates. <i>Journal of Biomedical Materials Research - Part A</i> , 2006 , 77, 672-8	5.4	34
56	Molecular simulation studies of the structure of phosphorylcholine self-assembled monolayers. <i>Journal of Chemical Physics</i> , 2006 , 125, 174714	3.9	34
55	Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. <i>Langmuir</i> , 2006 , 22, 10072-	-74	558
54	Strong resistance of a thin crystalline layer of balanced charged groups to protein adsorption. <i>Langmuir</i> , 2006 , 22, 8186-91	4	184
53	Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. <i>Biomacromolecules</i> , 2006 , 7, 3311-5	6.9	390
52	Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. <i>Langmuir</i> , 2006 , 22, 2222-6	4	265
51	SPR Biosensors for Detection of Biological and Chemical Analytes. <i>Springer Series on Chemical Sensors and Biosensors</i> , 2006 , 177-190	2	8
50	Understanding the nonfouling mechanism of surfaces through molecular simulations of sugar-based self-assembled monolayers. <i>Journal of Chemical Physics</i> , 2006 , 125, 214704	3.9	70

49	Strong resistance of oligo(phosphorylcholine) self-assembled monolayers to protein adsorption. <i>Langmuir</i> , 2006 , 22, 2418-21	4	90
48	Controlling DNA orientation on mixed ssDNA/OEG SAMs. <i>Langmuir</i> , 2006 , 22, 4694-8	4	83
47	Secreted protein acidic and rich in cysteine (SPARC/osteonectin/BM-40) binds to fibrinogen fragments D and E, but not to native fibrinogen. <i>Matrix Biology</i> , 2006 , 25, 20-6	11.4	14
46	Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. <i>Biosensors and Bioelectronics</i> , 2006 , 22, 752-8	11.8	246
45	Studies of alphaB crystallin subunit dynamics by surface plasmon resonance. <i>Analytical Biochemistry</i> , 2006 , 350, 186-95	3.1	23
44	Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 10799-804	3.4	456
43	Improved method for the preparation of carboxylic acid and amine terminated self-assembled monolayers of alkanethiolates. <i>Langmuir</i> , 2005 , 21, 2633-6	4	212
42	Intramolecular Janus Segregation of a Heteroarm Star Copolymer. <i>Macromolecules</i> , 2005 , 38, 6201-620	9 5.5	40
41	Identifying the SPARC binding sites on collagen I and procollagen I by atomic force microscopy. <i>Analytical Chemistry</i> , 2005 , 77, 6765-71	7.8	33
40	Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: The molecular basis for nonfouling behavior. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 2934-41	3.4	421
39	Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: a molecular simulation study. <i>Biophysical Journal</i> , 2005 , 89, 158-66	2.9	278
38	Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor. <i>Sensors and Actuators B: Chemical</i> , 2005 , 107, 193-201	8.5	99
37	Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor. <i>Sensors and Actuators B: Chemical</i> , 2005 , 107, 202-208	8.5	105
36	Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14473-8	16.4	814
35	Controlling osteopontin orientation on surfaces to modulate endothelial cell adhesion. <i>Journal of Biomedical Materials Research - Part A</i> , 2005 , 74, 23-31	5.4	66
34	DNA-directed protein immobilization on mixed self-assembled monolayers via a streptavidin bridge. <i>Langmuir</i> , 2004 , 20, 8090-5	4	117
33	Probing the orientation of surface-immobilized immunoglobulin G by time-of-flight secondary ion mass spectrometry. <i>Langmuir</i> , 2004 , 20, 1877-87	4	141
32	Molecular Simulation Studies of the Orientation and Conformation of Cytochrome c Adsorbed on Self-Assembled Monolayers. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 17418-17424	3.4	132

(2002-2004)

31	DNA directed protein immobilization on mixed ssDNA/oligo(ethylene glycol) self-assembled monolayers for sensitive biosensors. <i>Analytical Chemistry</i> , 2004 , 76, 6967-72	7.8	140
30	Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. <i>Langmuir</i> , 2004 , 20, 8931-8	4	256
29	Controlling Antibody Orientation on Charged Self-Assembled Monolayers. <i>Langmuir</i> , 2003 , 19, 2859-28	36 <u>4</u>	209
28	Surface functionalization for self-referencing surface plasmon resonance (SPR) biosensors by multi-step self-assembly. <i>Sensors and Actuators B: Chemical</i> , 2003 , 90, 22-30	8.5	102
27	Tip-Based Hybrid Simulation Study of Frictional Properties of Self-Assembled Monolayers: Effects of Chain Length, Terminal Group, Scan Direction, and Scan Velocity. <i>Langmuir</i> , 2003 , 19, 9742-9747	4	35
26	Protein Adsorption on Alkanethiolate Self-Assembled Monolayers: Nanoscale Surface Structural and Chemical Effects. <i>Langmuir</i> , 2003 , 19, 2974-2982	4	69
25	Nanoscale Frictional Properties of Mixed Alkanethiol Self-Assembled Monolayers on Au(111) by Scanning Force Microscopy: Humidity Effect. <i>Langmuir</i> , 2003 , 19, 666-671	4	24
24	Orientation of Adsorbed Antibodies on Charged Surfaces by Computer Simulation Based on a United-Residue Model. <i>Langmuir</i> , 2003 , 19, 3472-3478	4	116
23	Molecular-Scale Mixed Alkanethiol Monolayers of Different Terminal Groups on Au(111) by Low-Current Scanning Tunneling Microscopy. <i>Langmuir</i> , 2003 , 19, 3266-3271	4	51
22	Molecular simulation study of nanoscale friction between alkyl monolayers on Si(111) immersed in solvents. <i>Journal of Chemical Physics</i> , 2003 , 119, 765-770	3.9	15
21	Cell multipole method for molecular simulations in bulk and confined systems. <i>Journal of Chemical Physics</i> , 2003 , 118, 5347-5355	3.9	11
20	Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. <i>International Journal of Food Microbiology</i> , 2002 , 75, 61-9	5.8	261
19	In situ single-molecule detection of antibody-antigen binding by tapping-mode atomic force microscopy. <i>Analytical Chemistry</i> , 2002 , 74, 6017-22	7.8	50
18	Orientation of a Y-shaped biomolecule adsorbed on a charged surface. <i>Physical Review E</i> , 2002 , 66, 011	91.4	13
17	Molecular simulation study of nanoscale friction for alkyl monolayers on Si(111). <i>Journal of Chemical Physics</i> , 2002 , 117, 1804-1811	3.9	55
16	Measurements of Friction and Adhesion for Alkyl Monolayers on Si(111) by Scanning Force Microscopy. <i>Langmuir</i> , 2002 , 18, 5448-5456	4	50
15	Radial Size of a Starburst Dendrimer in Solvents of Varying Quality. <i>Macromolecules</i> , 2002 , 35, 7865-78	68 5 .5	63
14	Molecular simulation study of the c(4½) superlattice structure of alkanethiol self-assembled monolayers on Au(111). <i>Journal of Chemical Physics</i> , 2002 , 117, 7342-7349	3.9	99

13	Molecular simulation studies of self-assembled monolayers of alkanethiols on Au(111). <i>Molecular Physics</i> , 2002 , 100, 2261-2275	1.7	40
12	Transport diffusion of liquid water and methanol through membranes. <i>Journal of Chemical Physics</i> , 2002 , 117, 808-818	3.9	42
11	Spanning Time Scales in Dynamic Simulations of Atomic-Scale Friction. <i>Tribology Letters</i> , 2001 , 11, 111-	11 <u>25</u> 8	4
10	Nonequilibrium molecular dynamics simulations of confined fluids in contact with the bulk. <i>Journal of Chemical Physics</i> , 2001 , 114, 6869-6877	3.9	36
9	Controlled Chemical and Structural Properties of Mixed Self-Assembled Monolayers by Coadsorption of Symmetric and Asymmetric Disulfides on Au(111). <i>Journal of Physical Chemistry B</i> , 2001 , 105, 2975-2980	3.4	66
8	Molecular Simulation Study of Alkyl Monolayers on Si(111). <i>Langmuir</i> , 2001 , 17, 6275-6281	4	64
7	Atomic indentation and friction of self-assembled monolayers by hybrid molecular simulations. Journal of Chemical Physics, 2000 , 113, 8800-8806	3.9	54
6	Nanoscale Frictional Properties of Pure and Mixed Alkanethiols on Au(111) by Scanning Force Microscopy. <i>ACS Symposium Series</i> , 2000 , 168-177	0.4	
5	Controlled Chemical and Structural Properties of Mixed Self-Assembled Monolayers of Alkanethiols on Au(111). <i>Langmuir</i> , 2000 , 16, 9287-9293	4	125
4	Vapour-liquid equilibria in two-dimensional Lennard-Jones fluids: unperturbed and substrate-mediated films. <i>Molecular Physics</i> , 1995 , 86, 599-612	1.7	41
3	Adsorption, isosteric heat and commensurate-incommensurate transition of methane on graphite. <i>Molecular Physics</i> , 1993 , 80, 103-116	1.7	52
2	Layering, freezing transitions, capillary condensation and diffusion of methane in slit carbon pores. <i>Molecular Physics</i> , 1993 , 79, 373-391	1.7	84
1	Computer Simulation Study of Adsorption, Isosteric Heat and Phase Transitions of Methane on Graphite. <i>Materials Research Society Symposia Proceedings</i> , 1992 , 290, 191		2