

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2328832/publications.pdf Version: 2024-02-01

ΠΗΝΙΑΛΗ

#	Article	IF	CITATIONS
1	New concepts for generating interspecies chimeras using human pluripotent stem cells. Protein and Cell, 2022, 13, 234-238.	11.0	9
2	Glycogen synthase downregulation rescues the amylopectinosis of murine RBCK1 deficiency. Brain, 2022, 145, 2361-2377.	7.6	12
3	Three-dimensional (3D) scaffolds as powerful weapons for tumor immunotherapy. Bioactive Materials, 2022, 17, 300-319.	15.6	21
4	Harnessing 4D Printing Bioscaffolds for Advanced Orthopedics. Small, 2022, 18, e2106824.	10.0	49
5	Novel Glucose-Responsive Antioxidant Hybrid Hydrogel for Enhanced Diabetic Wound Repair. ACS Applied Materials & Interfaces, 2022, 14, 7680-7689.	8.0	102
6	Development of poly(<i>p</i> -coumaric acid) as a self-anticancer nanocarrier for efficient and biosafe cancer therapy. Biomaterials Science, 2022, 10, 2263-2274.	5.4	11
7	Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers. Journal of Materials Chemistry B, 2022, 10, 2077-2096.	5.8	33
8	A drug/carrier dual redox-responsive system based on 6-mercaptopurine dimer-loaded cysteine polymer nanoparticles for enhanced lymphoma therapy. Nano Research, 2022, 15, 4544-4551.	10.4	10
9	AAV-Mediated Artificial miRNA Reduces Pathogenic Polyglucosan Bodies and Neuroinflammation in Adult Polyglucosan Body and Lafora Disease Mouse Models. Neurotherapeutics, 2022, 19, 982-993.	4.4	14
10	The RIG-l–NRF2 axis regulates the mesenchymal stromal niche for bone marrow transplantation. Blood, 2022, 139, 3204-3221.	1.4	9
11	Labeling of heterochronic ribosomes reveals C1ORF109 and SPATA5 control a late step in human ribosome assembly. Cell Reports, 2022, 38, 110597.	6.4	11
12	Titanium nanosheet as robust and biosafe drug carrier for combined photochemo cancer therapy. Journal of Nanobiotechnology, 2022, 20, 154.	9.1	14
13	A novel hydrogel with glucose-responsive hyperglycemia regulation and antioxidant activity for enhanced diabetic wound repair. Nano Research, 2022, 15, 5305-5315.	10.4	42
14	Poly(disulfide)s: From Synthesis to Drug Delivery. Biomacromolecules, 2022, 23, 1-19.	5.4	40
15	Recent Advances of Poly(ester amide)s-Based Biomaterials. Biomacromolecules, 2022, 23, 1892-1919.	5.4	24
16	Facile and One-step Direct Synthesis of Poly(valine) as a Robust Drug Nanocarrier for Enhanced Breast Cancer Therapy. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1016-1027.	3.8	7
17	Molecular imaging nanoprobes for theranostic applications. Advanced Drug Delivery Reviews, 2022, 186, 114320.	13.7	41
18	Reprogramming Stars #7: Dynamic Pluripotent Stem Cell States and Their Applications–An Interview with Dr. Jun Wu. Cellular Reprogramming, 2022, , .	0.9	0

#	Article	IF	CITATIONS
19	Innovations and challenges of polyphenol-based smart drug delivery systems. Nano Research, 2022, 15, 8156-8184.	10.4	15
20	Polyphenols as a versatile component in tissue engineering. Acta Biomaterialia, 2021, 119, 57-74.	8.3	75
21	Redox responsive nanoparticle encapsulating black phosphorus quantum dots for cancer theranostics. Bioactive Materials, 2021, 6, 655-665.	15.6	56
22	Derivation of Intermediate Pluripotent Stem Cells Amenable to Primordial Germ Cell Specification. Cell Stem Cell, 2021, 28, 550-567.e12.	11.1	118
23	pH-Sensitive nanogels for drug delivery in cancer therapy. Biomaterials Science, 2021, 9, 574-589.	5.4	105
24	Extraembryonic Endoderm (XEN) Cells Capable of Contributing to Embryonic Chimeras Established from Pig Embryos. Stem Cell Reports, 2021, 16, 212-223.	4.8	9
25	Growth Competition in Interspecies Chimeras: A New Paradigm for Blastocyst Complementation. Cell Stem Cell, 2021, 28, 3-5.	11.1	7
26	Platinum-based chemotherapy <i>via</i> nanocarriers and co-delivery of multiple drugs. Biomaterials Science, 2021, 9, 6023-6036.	5.4	19
27	Anti-inflammation biomaterial platforms for chronic wound healing. Biomaterials Science, 2021, 9, 4388-4409.	5.4	78
28	Cell competition constitutes a barrier for interspecies chimerism. Nature, 2021, 592, 272-276.	27.8	61
29	Advances of hydrogel dressings in diabetic wounds. Biomaterials Science, 2021, 9, 1530-1546.	5.4	154
30	Cross-species single-cell transcriptomic analysis reveals pre-gastrulation developmental differences among pigs, monkeys, and humans. Cell Discovery, 2021, 7, 8.	6.7	33
31	Blastocyst-like structures generated from human pluripotent stem cells. Nature, 2021, 591, 620-626.	27.8	275
32	Targeting Gys1 with AAV‣aCas9 Decreases Pathogenic Polyglucosan Bodies and Neuroinflammation in Adult Polyglucosan Body and Lafora Disease Mouse Models. Neurotherapeutics, 2021, 18, 1414-1425.	4.4	26
33	Chimeric contribution of human extended pluripotent stem cells to monkey embryos exÂvivo. Cell, 2021, 184, 2020-2032.e14.	28.9	85
34	Simplification of culture conditions and feeder-free expansion of bovine embryonic stem cells. Scientific Reports, 2021, 11, 11045.	3.3	31
35	The road to generating transplantable organs: from blastocyst complementation to interspecies chimeras. Development (Cambridge), 2021, 148, .	2.5	25
36	Rebirth of Aspirin Synthesis Byâ€Product: Prickly Poly(salicylic acid) Nanoparticles as Selfâ€Anticancer Drug Carrier. Advanced Functional Materials, 2021, 31, 2100805.	14.9	48

#	Article	IF	CITATIONS
37	Edible Materials in Tissue Regeneration. Macromolecular Bioscience, 2021, 21, e2100114.	4.1	13
38	Directional homing of glycosylation-modified bone marrow mesenchymal stem cells for bone defect repair. Journal of Nanobiotechnology, 2021, 19, 228.	9.1	13
39	Fitness selection in human pluripotent stem cells and interspecies chimeras: Implications for human development and regenerative medicine. Developmental Biology, 2021, 476, 209-217.	2.0	5
40	Nanomaterial-Facilitated Cyclin-Dependent Kinase 7 Inhibition Suppresses Gallbladder Cancer Progression via Targeting Transcriptional Addiction. ACS Nano, 2021, 15, 14744-14755.	14.6	10
41	More natural more better: triple natural anti-oxidant puerarin/ferulic acid/polydopamine incorporated hydrogel for wound healing. Journal of Nanobiotechnology, 2021, 19, 237.	9.1	53
42	Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydrate Polymers, 2021, 266, 118097.	10.2	70
43	Nanoparticle-Mediated Inhibition of Mitochondrial Glutaminolysis to Amplify Oxidative Stress for Combination Cancer Therapy. Nano Letters, 2021, 21, 7569-7578.	9.1	37
44	Advances in Encapsulation and Delivery Strategies for Islet Transplantation. Advanced Healthcare Materials, 2021, 10, e2100965.	7.6	37
45	Stepwise conversion methods between ground states pluripotency from naÃ ⁻ ve to primed. Biochemical and Biophysical Research Communications, 2021, 574, 70-77.	2.1	1
46	<i>In vivo</i> metabolizable branched poly(ester amide) based on inositol and amino acids as a drug nanocarrier for cancer therapy. Biomaterials Science, 2021, 9, 6555-6567.	5.4	4
47	One-Step and Facile Synthesis of Poly(phenylalanine) as a Robust Drug Carrier for Enhanced Cancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 49658-49670.	8.0	4
48	Livestock pluripotency is finally captured in vitro. Reproduction, Fertility and Development, 2020, 32, 11.	0.4	25
49	Arginine based poly (ester amide)/ hyaluronic acid hybrid hydrogels for bone tissue Engineering. Carbohydrate Polymers, 2020, 230, 115640.	10.2	54
50	Nanoparticle enhanced combination therapy for stem-like progenitors defined by single-cell transcriptomics in chemotherapy-resistant osteosarcoma. Signal Transduction and Targeted Therapy, 2020, 5, 196.	17.1	29
51	Redox Responsive Metal Organic Framework Nanoparticles Induces Ferroptosis for Cancer Therapy. Small, 2020, 16, e2001251.	10.0	107
52	An effective vaginal gel to deliver CRISPR/Cas9 system encapsulated in poly (β-amino ester) nanoparticles for vaginal gene therapy. EBioMedicine, 2020, 58, 102897.	6.1	15
53	Redoxâ€Responsive Selfâ€Assembled Nanoparticles for Cancer Therapy. Advanced Healthcare Materials, 2020, 9, e2000605.	7.6	59
54	2D nanomaterials for tissue engineering application. Nano Research, 2020, 13, 2019-2034.	10.4	59

#	Article	IF	CITATIONS
55	Hyperbranched poly(β-amino ester) based polyplex nanopaticles for delivery of CRISPR/Cas9 system and treatment of HPV infection associated cervical cancer. Journal of Controlled Release, 2020, 321, 654-668.	9.9	60
56	Advances and Impact of Antioxidant Hydrogel in Chronic Wound Healing. Advanced Healthcare Materials, 2020, 9, e1901502.	7.6	373
57	Tofu-Incorporated Hydrogels for Potential Bone Regeneration. ACS Biomaterials Science and Engineering, 2020, 6, 3037-3045.	5.2	13
58	In vitro and in vivo growth inhibition of human cervical cancer cells via human papillomavirus E6/E7 mRNAs' cleavage by CRISPR/Cas13a system. Antiviral Research, 2020, 178, 104794.	4.1	27
59	Cleavable bimetallic-organic polymers for ROS mediated cascaded cancer therapy under the guidance of MRI through tumor hypoxia relief strategy. Science China Chemistry, 2020, 63, 936-945.	8.2	21
60	Derivation of sheep embryonic stem cells under optimized conditions. Reproduction, 2020, 160, 761-772.	2.6	24
61	Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nature Genetics, 2019, 51, 1380-1388.	21.4	236
62	Polydopamine/puerarin nanoparticle-incorporated hybrid hydrogels for enhanced wound healing. Biomaterials Science, 2019, 7, 4230-4236.	5.4	89
63	Natural Polymerâ€Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property. Advanced Healthcare Materials, 2019, 8, e1900670.	7.6	178
64	Halloysite Nanotube Based Scaffold for Enhanced Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 4037-4047.	5.2	61
65	Generation of pig induced pluripotent stem cells using an extended pluripotent stem cell culture system. Stem Cell Research and Therapy, 2019, 10, 193.	5.5	50
66	Generation of Blastocyst-like Structures from Mouse Embryonic and Adult Cell Cultures. Cell, 2019, 179, 687-702.e18.	28.9	175
67	Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science, 2019, 366, .	12.6	137
68	Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction. Cell Research, 2019, 29, 804-819.	12.0	51
69	Egg-White-/Eggshell-Based Biomimetic Hybrid Hydrogels for Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 5384-5391.	5.2	39
70	Delivery of CRISPR/Cas9 for therapeutic genome editing. Journal of Gene Medicine, 2019, 21, e3107.	2.8	93
71	Highly Efficient Derivation of Pluripotent Stem Cells from Mouse Preimplantation and Postimplantation Embryos in Serum-Free Conditions. Methods in Molecular Biology, 2019, 2005, 29-36.	0.9	1
72	Pig Chimeric Model with Human Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 2005, 101-124.	0.9	4

#	Article	IF	CITATIONS
73	Embryonic Chimeras with Human Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 2005, 125-151.	0.9	1
74	Cytological Immunostaining of HMGA2, LRP1B, and TP63 as Potential Biomarkers for Triaging Human Papillomavirus-Positive Women. Translational Oncology, 2019, 12, 959-967.	3.7	12
75	Risk stratification of cervical lesions using capture sequencing and machine learning method based on HPV and human integrated genomic profiles. Carcinogenesis, 2019, 40, 1220-1228.	2.8	19
76	Egg white coated alginate nanoparticles with electron sprayer for potential anticancer application. International Journal of Pharmaceutics, 2019, 564, 188-196.	5.2	15
77	Albumin enhances PTX delivery ability of dextran NPs and therapeutic efficacy of PTX for colorectal cancer. Journal of Materials Chemistry B, 2019, 7, 3537-3545.	5.8	37
78	Mutations in foregut SOX2+ cells induce efficient proliferation via CXCR2 pathway. Protein and Cell, 2019, 10, 485-495.	11.0	4
79	Pursuing Specific Chemotherapy of Orthotopic Breast Cancer with Lung Metastasis from Docking Nanoparticles Driven by Bioinspired Exosomes. Nano Letters, 2019, 19, 3256-3266.	9.1	78
80	Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biology, 2019, 17, e3000201.	5.6	104
81	Poly(Ferulic Acid) with an Anticancer Effect as a Drug Nanocarrier for Enhanced Colon Cancer Therapy. Advanced Functional Materials, 2019, 29, 1808646.	14.9	93
82	Progress in electrospun composite nanofibers: composition, performance and applications for tissue engineering. Journal of Materials Chemistry B, 2019, 7, 7075-7089.	5.8	95
83	In vitro breeding: application of embryonic stem cells to animal productionâ€. Biology of Reproduction, 2019, 100, 885-895.	2.7	39
84	Pridopidine stabilizes mushroom spines in mouse models of Alzheimer's disease by acting on the sigma-1 receptor. Neurobiology of Disease, 2019, 124, 489-504.	4.4	56
85	Black Phosphorus Hydrogel Scaffolds Enhance Bone Regeneration via a Sustained Supply of Calcium-Free Phosphorus. ACS Applied Materials & Interfaces, 2019, 11, 2908-2916.	8.0	189
86	Nanoparticle Therapy for Prostate Cancer: Overview and Perspectives. Current Topics in Medicinal Chemistry, 2019, 19, 57-73.	2.1	33
87	Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2090-2095.	7.1	181
88	ATF6 safeguards organelle homeostasis and cellular aging in human mesenchymal stem cells. Cell Discovery, 2018, 4, 2.	6.7	49
89	First stem cell transplantation to regenerate human lung. Protein and Cell, 2018, 9, 244-245.	11.0	8
90	Inhibition of TRPC1-Dependent Store-Operated Calcium Entry Improves Synaptic Stability and Motor Performance in a Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2018, 7, 35-50.	1.9	49

#	Article	IF	CITATIONS
91	In vivo reprogramming of wound-resident cells generates skin epithelial tissue. Nature, 2018, 561, 243-247.	27.8	104
92	Biomimetic Shells Endow Sub-50 nm Nanoparticles with Ultrahigh Paclitaxel Payloads for Specific and Robust Chemotherapy. ACS Applied Materials & Interfaces, 2018, 10, 33976-33985.	8.0	28
93	Arginine-based poly(ester amide) nanoparticle platform: From structure–property relationship to nucleic acid delivery. Acta Biomaterialia, 2018, 74, 180-191.	8.3	61
94	Human Albumin Fragments Nanoparticles as PTX Carrier for Improved Anti-cancer Efficacy. Frontiers in Pharmacology, 2018, 9, 582.	3.5	26
95	Bioreactor Synergy with 3D Scaffolds: New Era for Stem Cells Culture. ACS Applied Bio Materials, 2018, 1, 193-209.	4.6	22
96	Cyclodextrin-based host–guest supramolecular hydrogel and its application in biomedical fields. Polymer Chemistry, 2018, 9, 3436-3449.	3.9	155
97	Ma et al. reply. Nature, 2018, 560, E10-E23.	27.8	37
98	Visualization of aging-associated chromatin alterations with an engineered TALE system. Cell Research, 2017, 27, 483-504.	12.0	51
99	Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell, 2017, 168, 473-486.e15.	28.9	397
100	Developmental competence of porcine genomeâ€edited zygotes. Molecular Reproduction and Development, 2017, 84, 814-821.	2.0	11
101	Integration of CpG-free DNA induces de novo methylation of CpG islands in pluripotent stem cells. Science, 2017, 356, 503-508.	12.6	68
102	Derivation of Pluripotent Stem Cells with InÂVivo Embryonic and Extraembryonic Potency. Cell, 2017, 169, 243-257.e25.	28.9	382
103	Epstein-Barr virus, cytomegalovirus, and multiple sclerosis susceptibility. Neurology, 2017, 89, 1330-1337.	1.1	72
104	CRISPR-Cas9 mediated one-step disabling of pancreatogenesis in pigs. Scientific Reports, 2017, 7, 10487.	3.3	37
105	Correction of a pathogenic gene mutation in human embryos. Nature, 2017, 548, 413-419.	27.8	781
106	Genetic enhancement in cultured human adult stem cells conferred by a single nucleotide recoding. Cell Research, 2017, 27, 1178-1181.	12.0	40
107	The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. Neurobiology of Disease, 2017, 97, 46-59.	4.4	105
108	2 BOVINE EMBRYONIC STEM-LIKE CELLS DERIVED FROM IN VITRO-PRODUCED BLASTOCYSTS. Reproduction, Fertility and Development, 2017, 29, 108.	0.4	1

#	Article	IF	CITATIONS
109	Stem cells and interspecies chimaeras. Nature, 2016, 540, 51-59.	27.8	134
110	Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature, 2016, 540, 270-275.	27.8	264
111	An overview of mammalian pluripotency. Development (Cambridge), 2016, 143, 1644-1648.	2.5	29
112	Cellular Metabolism and Induced Pluripotency. Cell, 2016, 166, 1371-1385.	28.9	133
113	3D Culture Supports Long-Term Expansion of Mouse and Human Nephrogenic Progenitors. Cell Stem Cell, 2016, 19, 516-529.	11.1	153
114	In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature, 2016, 540, 144-149.	27.8	906
115	Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells. Nature Communications, 2016, 7, 11056.	12.8	68
116	Generation of human organs in pigs via interspecies blastocyst complementation. Reproduction in Domestic Animals, 2016, 51, 18-24.	1.4	21
117	Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs. Protein and Cell, 2016, 7, 210-221.	11.0	29
118	Stem Cells: A Renaissance in Human Biology Research. Cell, 2016, 165, 1572-1585.	28.9	87
119	SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Research, 2016, 26, 190-205.	12.0	261
120	The Molecular Harbingers of Early Mammalian Embryo Patterning. Cell, 2016, 165, 13-15.	28.9	11
121	Interspecies chimeric complementation for the generation of functional human tissues and organs in large animal hosts. Transgenic Research, 2016, 25, 375-384.	2.4	16
122	Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington's Disease Mouse Model. Journal of Neuroscience, 2016, 36, 125-141.	3.6	127
123	Creating Patient-Specific Neural Cells for the InÂVitro Study of Brain Disorders. Stem Cell Reports, 2015, 5, 933-945.	4.8	72
124	PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nature Communications, 2015, 6, 10068.	12.8	122
125	Regenerative medicine: targeted genome editing in vivo. Cell Research, 2015, 25, 271-272.	12.0	11
126	CRISPR/Cas9 and TALE: beyond cut and paste. Protein and Cell, 2015, 6, 157-159.	11.0	5

#	Article	IF	CITATIONS
127	Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature, 2015, 524, 234-238.	27.8	166
128	Selective Elimination of Mitochondrial Mutations in the Germline by Genome Editing. Cell, 2015, 161, 459-469.	28.9	245
129	Brains, Genes, and Primates. Neuron, 2015, 86, 617-631.	8.1	231
130	An alternative pluripotent state confers interspecies chimaeric competency. Nature, 2015, 521, 316-321.	27.8	215
131	Dynamic Pluripotent Stem Cell States and Their Applications. Cell Stem Cell, 2015, 17, 509-525.	11.1	133
132	Metabolic exit from naive pluripotency. Nature Cell Biology, 2015, 17, 1519-1521.	10.3	19
133	An Automated and Quantitative Method to Evaluate Progression of Striatal Pathology in Huntington's Disease Transgenic Mice. Journal of Huntington's Disease, 2014, 3, 343-350.	1.9	4
134	A designer's guide to pluripotency. Nature, 2014, 516, 172-173.	27.8	12
135	Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nature Structural and Molecular Biology, 2013, 20, 1131-1139.	8.2	1,416
136	Modulation of β-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nature Communications, 2013, 4, 2403.	12.8	139
137	Chemically induced pluripotent stem cells (CiPSCs): a transgene-free approach. Journal of Molecular Cell Biology, 2013, 5, 354-355.	3.3	34
138	DNA damage-induced sustained p53 activation contributes to inflammation-associated hepatocarcinogenesis in rats. Oncogene, 2013, 32, 4565-4571.	5.9	25
139	The GCTM-5 Epitope Associated with the Mucin-Like Glycoprotein FCGBP Marks Progenitor Cells in Tissues of Endodermal Origin. Stem Cells, 2012, 30, 1999-2009.	3.2	19
140	Neuronal Store-Operated Calcium Entry Pathway asÂaÂNovel Therapeutic Target forÂHuntington'sÂDisease Treatment. Chemistry and Biology, 2011, 18, 777-793.	6.0	132
141	Ginsenosides protect striatal neurons in a cellular model of Huntington's disease. Journal of Neuroscience Research, 2009, 87, 1904-1912.	2.9	72
142	Evaluation of Dimebon in cellular model of Huntington's disease. Molecular Neurodegeneration, 2008, 3, 15.	10.8	107
143	Cdc14B depletion leads to centriole amplification, and its overexpression prevents unscheduled centriole duplication. Journal of Cell Biology, 2008, 181, 475-483.	5.2	46
144	Nucleophosmin/B23 Negatively Regulates GCN5-dependent Histone Acetylation and Transactivation. Journal of Biological Chemistry, 2008, 283, 5728-5737.	3.4	11

#	Article	IF	CITATIONS
145	ATF6α Optimizes Long-Term Endoplasmic Reticulum Function to Protect Cells from Chronic Stress. Developmental Cell, 2007, 13, 351-364.	7.0	588
146	A Preference for Edgewise Interactions between Aromatic Rings and Carboxylate Anions:Â The Biological Relevance of Anionâ^'Quadrupole Interactions. Journal of Physical Chemistry B, 2007, 111, 8242-8249.	2.6	64
147	Dual-tagging system for the affinity purification of mammalian protein complexes. BioTechniques, 2007, 43, 296-302.	1.8	27
148	Evaluation of clinically relevant glutamate pathway inhibitors in in vitro model of Huntington's disease. Neuroscience Letters, 2006, 407, 219-223.	2.1	54
149	PARP1 Is a TRF2-associated Poly(ADP-Ribose)Polymerase and Protects Eroded Telomeres. Molecular Biology of the Cell, 2006, 17, 1686-1696.	2.1	106
150	An increase in telomere sister chromatid exchange in murine embryonic stem cells possessing critically shortened telomeres. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10256-10260.	7.1	45
151	Defining the Binding Site of Homotetrameric R67 Dihydrofolate Reductase and Correlating Binding Enthalpy with Catalysisâ€. Biochemistry, 2004, 43, 7403-7412.	2.5	20
152	Epiblast grafting and in vitro embryo culture. Protocol Exchange, 0, , .	0.3	0