## Fabiana Fernandes Bressan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2328573/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Porcine Primordial Germ Cell-Like Cells Generated from Induced Pluripotent Stem Cells Under<br>Different Culture Conditions. Stem Cell Reviews and Reports, 2022, 18, 1639-1656.                                  | 3.8 | 14        |
| 2  | <i>In vitro</i> induced pluripotency from urine-derived cells in porcine. World Journal of Stem Cells, 2022, 14, 231-244.                                                                                         | 2.8 | 1         |
| 3  | HEK293T Cells with TFAM Disruption by CRISPR-Cas9 as a Model for Mitochondrial Regulation. Life, 2022, 12, 22.                                                                                                    | 2.4 | 3         |
| 4  | Altrenogest during early pregnancy modulates uterine glandular epithelium and endometrial growth factor expression at the time implantation in pigs. Animal Reproduction, 2021, 18, e20200431.                    | 1.0 | 5         |
| 5  | Female Bioengineering: Primordial Germ Cell Differentiation of Mesenchymal Stem Cells onto<br>Placental Scaffolds. Current Trends in Biomedical Engineering & Biosciences, 2021, 20, .                            | 0.2 | 0         |
| 6  | Differentiation of Porcine Induced Pluripotent Stem Cells (piPSCs) into Neural Progenitor Cells<br>(NPCs). Journal of Visualized Experiments, 2021, , .                                                           | 0.3 | 0         |
| 7  | Cattle In Vitro Induced Pluripotent Stem Cells Generated and Maintained in 5 or 20% Oxygen and Different Supplementation. Cells, 2021, 10, 1531.                                                                  | 4.1 | 6         |
| 8  | Actions and Roles of FSH in Germinative Cells. International Journal of Molecular Sciences, 2021, 22, 10110.                                                                                                      | 4.1 | 26        |
| 9  | Isolation and characterization of neural stem cells from fetal canine spinal cord. Neuroscience<br>Letters, 2021, 765, 136293.                                                                                    | 2.1 | 3         |
| 10 | Neural Derivates of Canine Induced Pluripotent Stem Cells-Like Cells From a Mild Cognitive Impairment<br>Dog. Frontiers in Veterinary Science, 2021, 8, 725386.                                                   | 2.2 | 2         |
| 11 | Generation of Primordial Germ Cell-like Cells from iPSCs Derived from Turner Syndrome Patients.<br>Cells, 2021, 10, 3099.                                                                                         | 4.1 | 3         |
| 12 | Interaction of fibroblasts and induced pluripotent stem cells with poly(vinyl alcohol)â€based hydrogel<br>substrates. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 857-867. | 3.4 | 1         |
| 13 | Identification of hepatic progenitor cells in the canine fetal liver. Research in Veterinary Science, 2020, 133, 239-245.                                                                                         | 1.9 | 1         |
| 14 | Generation of neural progenitor cells from porcineâ€induced pluripotent stem cells. Journal of Tissue<br>Engineering and Regenerative Medicine, 2020, 14, 1880-1891.                                              | 2.7 | 7         |
| 15 | Catalytic inhibition of H3K9me2 writers disturbs epigenetic marks during bovine nuclear reprogramming. Scientific Reports, 2020, 10, 11493.                                                                       | 3.3 | 12        |
| 16 | Characterization of post-edited cells modified in the TFAM gene by CRISPR/Cas9 technology in the bovine model. PLoS ONE, 2020, 15, e0235856.                                                                      | 2.5 | 8         |
| 17 | Genetic Parameters and Genome-Wide Association Studies for Anti-Müllerian Hormone Levels and<br>Antral Follicle Populations Measured After Estrus Synchronization in Nellore Cattle. Animals, 2020,<br>10, 1185.  | 2.3 | 15        |
| 18 | A Comparative Approach of Cellular Reprogramming in the Rodentia Order. Cellular Reprogramming, 2020, 22, 227-235.                                                                                                | 0.9 | 2         |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | In Vitro Induction of Pluripotency from Equine Fibroblasts in 20% or 5% Oxygen. Stem Cells<br>International, 2020, 2020, 1-16.                                                                                            | 2.5 | 4         |
| 20 | Generation of induced pluripotent stem cells from large domestic animals. Stem Cell Research and Therapy, 2020, 11, 247.                                                                                                  | 5.5 | 21        |
| 21 | Placental scaffolds have the ability to support adiposeâ€derived cells differentiation into osteogenic<br>and chondrogenic lineages. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14,<br>1661-1672.     | 2.7 | 4         |
| 22 | <p>Characterization and Immunomodulation of Canine Amniotic Membrane Stem Cells</p> .<br>Stem Cells and Cloning: Advances and Applications, 2020, Volume 13, 43-55.                                                       | 2.3 | 9         |
| 23 | Pluripotent stem cells proliferation is associated with placentation in dogs. Animal Reproduction, 2020, 17, e20200040.                                                                                                   | 1.0 | 1         |
| 24 | Neurons-derived extracellular vesicles promote neural differentiation of ADSCs: a model to prevent peripheral nerve degeneration. Scientific Reports, 2019, 9, 11213.                                                     | 3.3 | 24        |
| 25 | Efficiency of transgene expression in bovine cells varies according to cell type and gene transfer method. Revista Colombiana De Ciencias Pecuarias, 2019, 32, 34-42.                                                     | 0.4 | 1         |
| 26 | Stem cells on regenerative and reproductive science in domestic animals. Veterinary Research Communications, 2019, 43, 7-16.                                                                                              | 1.6 | 22        |
| 27 | Applications of mesenchymal stem cell technology in bovine species. Stem Cell Research and Therapy, 2019, 10, 44.                                                                                                         | 5.5 | 38        |
| 28 | Xenotransplantation of canine spermatogonial stem cells (cSSCs) regulated by FSH promotes spermatogenesis in infertile mice. Stem Cell Research and Therapy, 2019, 10, 135.                                               | 5.5 | 9         |
| 29 | Generation and miRNA Characterization of Equine Induced Pluripotent Stem Cells Derived from Fetal and Adult Multipotent Tissues. Stem Cells International, 2019, 2019, 1-15.                                              | 2.5 | 16        |
| 30 | Edition of TFAM gene by CRISPR/Cas9 technology in bovine model. PLoS ONE, 2019, 14, e0213376.                                                                                                                             | 2.5 | 13        |
| 31 | Induced pluripotent stem cells throughout the animal kingdom: Availability and applications. World<br>Journal of Stem Cells, 2019, 11, 491-505.                                                                           | 2.8 | 44        |
| 32 | Proliferação Celular em Gestações Naturais e de Conceptos Bovinos Transgênicos Clonados, que<br>Expressam ProteÃna Fluorescente Verde. Brazilian Journal of Development, 2019, 5, 33368-33380.                            | 0.1 | 0         |
| 33 | In vitro identification of a stem cell population from canine hair follicle bulge region. Tissue and Cell, 2018, 50, 43-50.                                                                                               | 2.2 | 5         |
| 34 | Derivation and Differentiation of Canine Ovarian Mesenchymal Stem Cells. Journal of Visualized Experiments, 2018, , .                                                                                                     | 0.3 | 4         |
| 35 | Endometrial prostaglandin F2α in vitro production and its modulation regarding dominant follicle<br>position in cattle. Brazilian Journal of Veterinary Research and Animal Science, 2018, 55, e133937.                   | 0.2 | 0         |
| 36 | Distinct features of rabbit and human adipose-derived mesenchymal stem cells: implications for<br>biotechnology and translational research. Stem Cells and Cloning: Advances and Applications, 2018,<br>Volume 11, 43-54. | 2.3 | 10        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | ZEB1 and ZEB2 transcription factors are potential therapeutic targets of canine mammary cancer cells. Veterinary and Comparative Oncology, 2018, 16, 596-605.                                                | 1.8 | 13        |
| 38 | Dynamics of male canine germ cell development. PLoS ONE, 2018, 13, e0193026.                                                                                                                                 | 2.5 | 16        |
| 39 | Generation of LIF-independent induced pluripotent stem cells from canine fetal fibroblasts.<br>Theriogenology, 2017, 92, 75-82.                                                                              | 2.1 | 34        |
| 40 | Effect of POU5F1 Expression Level in Clonal Subpopulations of Bovine Fibroblasts Used as Nuclear Donors for Somatic Cell Nuclear Transfer. Cellular Reprogramming, 2017, 19, 294-301.                        | 0.9 | 4         |
| 41 | Achievements and perspectives in cloned and transgenic cattle production by nuclear transfer:<br>influence of cell type, epigenetic status and new technology. Animal Reproduction, 2017, 14, 1003-1013.     | 1.0 | 3         |
| 42 | Rabbit olfactory stem cells. Isolation protocol and characterization. Acta Cirurgica Brasileira, 2016, 31, 59-66.                                                                                            | 0.7 | 13        |
| 43 | Parthenogenesis and Human Assisted Reproduction. Stem Cells International, 2016, 2016, 1-8.                                                                                                                  | 2.5 | 23        |
| 44 | Effects of melatonin during IVM in defined medium on oocyte meiosis, oxidative stress, and subsequent embryo development. Theriogenology, 2016, 86, 1685-1694.                                               | 2.1 | 48        |
| 45 | Challenges and perspectives to enhance cattle production via in vitro techniques: focus on epigenetics and cell-secreted vesicles. Ciencia Rural, 2015, 45, 1879-1886.                                       | 0.5 | 2         |
| 46 | Mitochondrial DNA dynamics during in vitro culture and pluripotency induction of a bovine RhoO cell line. Genetics and Molecular Research, 2015, 14, 14093-14104.                                            | 0.2 | 9         |
| 47 | Generation of bovine (Bos indicus) and buffalo (Bubalus bubalis) adipose tissue derived stem cells:<br>isolation, characterization, and multipotentiality. Genetics and Molecular Research, 2015, 14, 53-62. | 0.2 | 40        |
| 48 | Epigenetic consequences of artificial reproductive technologies to the bovine imprinted genes SNRPN, H19/IGF2, and IGF2R. Frontiers in Genetics, 2015, 6, 58.                                                | 2.3 | 31        |
| 49 | Organic selenium supplementation increases PHGPx but does not improve viability in chilled boar semen. Andrologia, 2015, 47, 85-90.                                                                          | 2.1 | 7         |
| 50 | Caracterização das proteÃnas caveolinas -1 e -2 na placenta de conceptos bovinos clonados<br>transgênicos. Pesquisa Veterinaria Brasileira, 2015, 35, 477-485.                                               | 0.5 | 2         |
| 51 | Cat amniotic membrane multipotent cells are nontumorigenic and are safe for use in cell transplantation. Stem Cells and Cloning: Advances and Applications, 2014, 7, 71.                                     | 2.3 | 25        |
| 52 | Derivation and culture of putative parthenogenetic embryonic stem cells in new gelatin substrates<br>modified with galactomannan. Macromolecular Research, 2014, 22, 1053-1058.                              | 2.4 | 6         |
| 53 | Organic selenium increases PHGPx, but does not affect quality sperm in raw boar semen. Livestock<br>Science, 2014, 164, 175-178.                                                                             | 1.6 | 9         |
| 54 | Manipulation of the periovulatory sex steroidal milieu affects endometrial but not luteal gene expression in early diestrus Nelore cows. Theriogenology, 2014, 81, 861-869.                                  | 2.1 | 50        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Rreprogramming by gene induction: The factors involved in the establishment of canine stem cells.<br>Placenta, 2014, 35, A92.                                                                                                                        | 1.5 | 0         |
| 56 | The Influence of Morphology, Follicle Size and Bclâ€2 and Bax Transcripts on the Developmental Competence of Bovine Oocytes. Reproduction in Domestic Animals, 2014, 49, 576-583.                                                                    | 1.4 | 23        |
| 57 | Cytoplasmatic inheritance, epigenetics and reprogramming DNA as tools in animal breeding. Livestock Science, 2014, 166, 199-205.                                                                                                                     | 1.6 | 7         |
| 58 | Explorando os efeitos da sincronização do segundo estro e flushing alimentar sobre a incidência de<br>cistos ovarianos em marrãs utilizando gonadotrofinas exÃ3genas. Brazilian Journal of Veterinary<br>Research and Animal Science, 2014, 50, 307. | 0.2 | 1         |
| 59 | Development to Term of Cloned Cattle Derived from Donor Cells Treated with Valproic Acid. PLoS ONE, 2014, 9, e101022.                                                                                                                                | 2.5 | 34        |
| 60 | Effects of long-term in vitro culturing of transgenic bovine donor fibroblasts on cell viability and in<br>vitro developmental potential after nuclear transfer. In Vitro Cellular and Developmental Biology -<br>Animal, 2013, 49, 250-259.         | 1.5 | 9         |
| 61 | d-Xylose detection in Escherichia coli by a xylose binding protein-dependent response. Journal of<br>Biotechnology, 2013, 168, 440-445.                                                                                                              | 3.8 | 8         |
| 62 | Ptaquiloside reduces NK cell activities by enhancing metallothionein expression, which is prevented by selenium. Toxicology, 2013, 304, 100-108.                                                                                                     | 4.2 | 13        |
| 63 | Comparative analysis of the lipid profile of human mesenchymal stem cells induced to pluripotency by different transfection factors. Fertility and Sterility, 2013, 100, S456-S457.                                                                  | 1.0 | 1         |
| 64 | Breeding of transgenic cattle for human coagulation factor IX by a combination of lentiviral system and cloning. Genetics and Molecular Research, 2013, 12, 3675-3688.                                                                               | 0.2 | 8         |
| 65 | Insights on bovine genetic engineering and cloning. Pesquisa Veterinaria Brasileira, 2013, 33, 113-118.                                                                                                                                              | 0.5 | 2         |
| 66 | Fetal-Maternal Interactions in the Synepitheliochorial Placenta Using the eGFP Cloned Cattle Model.<br>PLoS ONE, 2013, 8, e64399.                                                                                                                    | 2.5 | 18        |
| 67 | Nuclear Transfer with Apoptotic Bovine Fibroblasts: Can Programmed Cell Death Be Reprogrammed?.<br>Cellular Reprogramming, 2012, 14, 217-224.                                                                                                        | 0.9 | 4         |
| 68 | Canine Fibroblasts Expressing Human Transcription Factors: What is in the Route for the Production of Canine Induced Pluripotent Stem Cells. Reproduction in Domestic Animals, 2012, 47, 84-87.                                                      | 1.4 | 7         |
| 69 | The use of parthenotegenetic and IVF bovine blastocysts as a model for the creation of human embryonic stem cells under defined conditions. Journal of Assisted Reproduction and Genetics, 2012, 29, 1039-1043.                                      | 2.5 | 9         |
| 70 | Post-thaw addition of seminal plasma reduces tyrosine phosphorylation on the surface of<br>cryopreserved equine sperm, but does not reduce lipid peroxidation. Theriogenology, 2012, 77,<br>1866-1872.e3.                                            | 2.1 | 35        |
| 71 | Muscle reorganisation through local injection of stem cells in the diaphragm of mdx mice. Acta<br>Veterinaria Scandinavica, 2012, 54, 73.                                                                                                            | 1.6 | 11        |
| 72 | Effects of bovine sperm cryopreservation using different freezing techniques and cryoprotective agents on plasma, acrosomal and mitochondrial membranes. Andrologia, 2012, 44, 154-159.                                                              | 2.1 | 45        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Improved Production of Genetically Modified Fetuses with Homogeneous Transgene Expression After<br>Transgene Integration Site Analysis and Recloning in Cattle. Cellular Reprogramming, 2011, 13, 29-36. | 0.9 | 15        |
| 74 | Gene expression in placentation of farm animals: An overview of gene function during development.<br>Theriogenology, 2011, 76, 589-597.                                                                  | 2.1 | 11        |
| 75 | β-casein gene expression by in vitro cultured bovine mammary epithelial cells derived from developing<br>mammary glands. Genetics and Molecular Research, 2011, 10, 604-614.                             | 0.2 | 14        |
| 76 | Viable Calves Produced by Somatic Cell Nuclear Transfer Using Meiotic-Blocked Oocytes. Cellular<br>Reprogramming, 2011, 13, 419-429.                                                                     | 0.9 | 25        |
| 77 | The use of animal models for stroke research: a review. Comparative Medicine, 2011, 61, 305-13.                                                                                                          | 1.0 | 78        |
| 78 | Embryo Mitochondrial DNA Depletion Is Reversed During Early Embryogenesis in Cattle1. Biology of Reproduction, 2010, 82, 76-85.                                                                          | 2.7 | 58        |
| 79 | 399 ISOLATION AND CHARACTERIZATION OF BOVINE MESENCHYMAL STEM CELLS DERIVED FROM ADIPOSE TISSUE. Reproduction, Fertility and Development, 2010, 22, 356.                                                 | 0.4 | 1         |
| 80 | 46 RECLONING USING TRANSGENIC FETAL FIBROBLASTS AS NUCLEI DONORS INCREASES DEVELOPMENTAL POTENTIAL OF RECONSTRUCTED EMBRYOS IN CATTLE. Reproduction, Fertility and Development, 2010, 22, 180.           | 0.4 | 1         |
| 81 | 50 PRE-MATURATION OF BOVINE OOCYTES SUBMITTED TO NUCLEAR TRANSFER: EFFECTS ON IN VIVO DEVELOPMENT. Reproduction, Fertility and Development, 2010, 22, 183.                                               | 0.4 | 0         |
| 82 | Unearthing the Roles of Imprinted Genes in the Placenta. Placenta, 2009, 30, 823-834.                                                                                                                    | 1.5 | 76        |
| 83 | Serum-Starved Apoptotic Fibroblasts Reduce Blastocyst Production but Enable Development to Term after SCNT in Cattle. Cloning and Stem Cells, 2009, 11, 565-573.                                         | 2.6 | 26        |
| 84 | 299 DEVELOPMENTAL COMPETENCE OF TRANSGENIC BOVINE EMBRYOS RECONSTRUCTED BY NUCLEAR TRANSFER USING MEIOSIS-BLOCKED OOCYTES. Reproduction, Fertility and Development, 2008, 20, 229.                       | 0.4 | 0         |
| 85 | 242 USE OF BRAIN-DERIVED NEUROTROPHIC FACTOR IN IN VITRO PREMATURATION OF BOVINE OOCYTES SUBJECTED TO PARTHENOGENETIC ACTIVATION. Reproduction, Fertility and Development, 2008, 20, 200.                | 0.4 | 0         |
| 86 | Induced Pluripotent Stem Cells from Animal Models: ApplicationsÂon Translational Research. , 0, , .                                                                                                      |     | 1         |