
Caterina Fusco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2328289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new expeditious synthesis of the core scaffold of salvianolic acid F trough a one-pot sequential Heck coupling catalyzed by palladium nanoparticles in ionic liquids. Journal of Organometallic Chemistry, 2022, 958, 122193.	0.8	3
2	Biobased Approach for Synthesis of Polymers and Sustainable Formulation of Industrial Hardeners. Coatings, 2022, 12, 361.	1.2	0
3	Steel slag as low-cost catalyst for artificial photosynthesis to convert CO2 and water into hydrogen and methanol. Scientific Reports, 2022, 12, .	1.6	6
4	Concerning Synthesis of New Biobased Polycarbonates with Curcumin in Replacement of Bisphenol A and Recycled Diphenyl Carbonate as Example of Circular Economy. Polymers, 2021, 13, 361.	2.0	8
5	Steel Slag as New Catalyst for the Synthesis of Fames from Soybean Oil. Catalysts, 2021, 11, 619.	1.6	5
6	Valorization of cigarette butts for synthesis of levulinic acid as top value-added chemicals. Scientific Reports, 2021, 11, 15775.	1.6	10
7	Insights into Pinacol Rearrangement: Oxidative versus Acidâ€Catalyzed Mechanism. ChemistrySelect, 2021, 6, 10238-10242.	0.7	0
8	Ionicâ€Liquid Controlled Nitration of Double Bond: Highly Selective Synthesis of Nitrostyrenes and Benzonitriles. European Journal of Organic Chemistry, 2020, 2020, 6012-6018.	1.2	4
9	Deep Control of Linear Oligomerization of Glycerol Using Lanthanum Catalyst on Mesoporous Silica Gel. Catalysts, 2020, 10, 1170.	1.6	7
10	Preparation of Biowax Esters in Continuous Flow Conditions. ACS Omega, 2019, 4, 12286-12292.	1.6	5
11	Frontispiece: Continued Progress towards Efficient Functionalization of Natural and Nonâ€natural Targets under Mild Conditions: Oxygenation by Câ^'H Bond Activation with Dioxirane. Chemistry - A European Journal, 2019, 25, .	1.7	0
12	ZnO/Ionic Liquid Catalyzed Biodiesel Production from Renewable and Waste Lipids as Feedstocks. Catalysts, 2019, 9, 71.	1.6	24
13	Continued Progress towards Efficient Functionalization of Natural and Nonâ€natural Targets under Mild Conditions: Oxygenation by Câ^'H Bond Activation with Dioxirane. Chemistry - A European Journal, 2019, 25, 12003-12017.	1.7	17
14	Dioxomolybdenum(VI) Complexes with Salicylamide Ligands: Synthesis, Structure, and Catalysis in the Epoxidation of Olefins under Eco-Friendly Conditions. European Journal of Inorganic Chemistry, 2019, 2019, 221-229.	1.0	10
15	Green Procedure for One-Pot Synthesis of Azelaic Acid Derivatives Using Metal Catalysis. Recent Innovations in Chemical Engineering, 2019, 11, 185-191.	0.2	2
16	TiO2@PEI-Grafted-MWCNTs Hybrids Nanocomposites Catalysts for CO2ÂPhotoreduction. Materials, 2018, 11, 307.	1.3	11
17	Catalytic Activity of Silicon Nanowires Decorated with Gold and Copper Nanoparticles Deposited by Pulsed Laser Ablation. Nanomaterials, 2018, 8, 78.	1.9	32
18	Epoxidation of Carbon Nanocapsules: Decoration of Single-Walled Carbon Nanotubes Filled with Metal Halides. Nanomaterials, 2018, 8, 137.	1.9	8

#	Article	IF	CITATIONS
19	Characterization of isolated 1-aza-adamantan-4-one (C9H13NO) from microwave, millimeter-wave and infrared spectroscopy supported by electronic structure calculations. Journal of Molecular Spectroscopy, 2017, 338, 6-14.	0.4	9
20	Methanolysis of epoxidized soybean oil in continuous flow conditions. Industrial Crops and Products, 2017, 109, 1-7.	2.5	8
21	Heterolytic (2 e) vs Homolytic (1 e) Oxidation Reactivity: Nâ^'H versus Câ^'H Switch in the Oxidation of Lactams by Dioxirans. Chemistry - A European Journal, 2017, 23, 259-262.	1.7	21
22	Preparation and Characterization of Soybean Oil-Based Polyurethanes for Digital Doming Applications. Materials, 2017, 10, 848.	1.3	13
23	One-Pot Conversion of Epoxidized Soybean Oil (ESO) into Soy-Based Polyurethanes by MoCl2O2 Catalysis. Molecules, 2017, 22, 333.	1.7	19
24	Heterogenization of Ketone Catalyst for Epoxidation by Low Pressure Plasma Fluorination of Silica Gel Supports. Molecules, 2017, 22, 2099.	1.7	4
25	Evaluating the NOx Storage Catalysts (NSC) Aging: A Preliminary Analytical Study with Electronic Microscopy. Applied Sciences (Switzerland), 2017, 7, 1059.	1.3	0
26	Synthesis, High-Resolution Infrared Spectroscopy, and Vibrational Structure of Cubane, C ₈ H ₈ . Journal of Physical Chemistry A, 2016, 120, 4418-4428.	1.1	6
27	Ab-initio Investigation of Unexpected Aspects of Hydroxylation of Diketopiperazines by Reaction with Dioxiranes. Communications in Computer and Information Science, 2016, , 139-145.	0.4	0
28	Dioxirane-mediated Metal-free Oxidations of Target Molecules Containing Unsaturated Carbons. Current Organic Chemistry, 2015, 19, 45-61.	0.9	9
29	Photoreduction of Carbon Dioxide to Formic Acid in Aqueous Suspension: A Comparison between Phthalocyanine/TiO2 and Porphyrin/TiO2 Catalysed Processes. Molecules, 2015, 20, 396-415.	1.7	51
30	Epoxidation of Multiâ€Walled Carbon Nanotubes by Organocatalytic Oxidation. European Journal of Organic Chemistry, 2015, 2015, 3063-3068.	1.2	10
31	Synthesis and Biological Evaluation of a Valinomycin Analog Bearing a Pentafluorophenyl Active Ester Moiety. Journal of Organic Chemistry, 2015, 80, 12646-12650.	1.7	4
32	Reactivity of 1,3-dimethylimidazolium-2-carboxylate with dimethylcarbonate at high temperature: Unexpected 2-ethyl-functionalisation of the imidazolium moiety and employment of the NHC-CO2/dimethylcarbonate system in a base promoted reaction. Catalysis Communications, 2014, 46, 94-97.	1.6	4
33	Tunable Epoxidation of Singleâ€Walled Carbon Nanotubes by Isolated Methyl(trifluoromethyl)dioxirane. European Journal of Organic Chemistry, 2014, 2014, 1666-1671.	1.2	23
34	A new synthetic approach to oxidation organocatalysts supported on Merrifield resin using plasma-enhanced chemical vapor deposition. Applied Catalysis A: General, 2014, 470, 132-139.	2.2	10
35	Stereoselective Epoxidation of Cyclic Dienes and Trienes by Dioxiranes. Journal of Heterocyclic Chemistry, 2014, 51, 1482-1486.	1.4	3
36	Turning lipophilic phthalocyanines/TiO2 composites into efficient photocatalysts for the conversion of CO2 into formic acid under UV–vis light irradiation. Applied Catalysis A: General, 2014, 481, 169-172.	2.2	44

#	Article	IF	CITATIONS
37	Oxidation-proof microemulsions: Microstructure and reactivity in the presence of dioxiranes. Journal of Colloid and Interface Science, 2013, 408, 138-144.	5.0	9
38	Siteâ€dependent biological activity of valinomycin analogs bearing derivatizable hydroxyl sites. Journal of Peptide Science, 2013, 19, 751-757.	0.8	21
39	Oxidative cleavage of lactams in water using dioxiranes: an expedient and environmentally-safe route to ω-nitro acids. Tetrahedron Letters, 2013, 54, 515-517.	0.7	20
40	Antitumor Potential of Conjugable Valinomycins Bearing Hydroxyl Sites: In Vitro Studies. ACS Medicinal Chemistry Letters, 2013, 4, 1189-1192.	1.3	22
41	Direct Synthesis of ESBO Derivatives- ¹⁸ O Labelled with Dioxirane. Scientific World Journal, The, 2013, 2013, 1-7.	0.8	1
42	A Silica-Supported Trifluoromethyl Ketone with KHSO5 for Epoxidation. Synfacts, 2012, 8, 1271-1271.	0.0	0
43	Dioxiraneâ€Mediated Heterogeneous Epoxidations with Potassium Caroate: A Solid Catalyst Bearing Anchored Ketone Moieties. European Journal of Organic Chemistry, 2012, 2012, 4616-4621.	1.2	21
44	Selective Synthesis of Hydroxy Analogues of Valinomycin using Dioxiranes. Organic Letters, 2011, 13, 5096-5099.	2.4	23
45	Selective Hydroxylation of Methane by Dioxiranes under Mild Conditions. Organic Letters, 2011, 13, 2142-2144.	2.4	21
46	Concerning Selectivity in the Oxidation of Peptides by Dioxiranes. Further Insight into the Effect of Carbamate Protecting Groups. Journal of Organic Chemistry, 2010, 75, 4812-4816.	1.7	26
47	Oxyfunctionalization of Non-Natural Targets by Dioxiranes. 6. On the Selective Hydroxylation of Cubane. Organic Letters, 2009, 11, 3574-3577.	2.4	16
48	Oxidation of natural targets by dioxiranes. Part 6: on the direct regio- and site-selective oxyfunctionalization of estrone and of 5α-androstane steroid derivatives. Tetrahedron Letters, 2008, 49, 5614-5617.	0.7	10
49	Concerning the Reactivity of Dioxiranes. Observations from Experiments and Theory. Journal of the American Chemical Society, 2008, 130, 1197-1204.	6.6	32
50	Stereoselective dioxirane hydroxylations and the synthesis of tripod boronic acid esters. Tetrahedron Letters, 2007, 48, 3575-3578.	0.7	7
51	A Novel Approach to the Efficient Oxygenation of Hydrocarbons under Mild Conditions. Superior Oxo Transfer Selectivity Using Dioxiranes. Accounts of Chemical Research, 2006, 39, 1-9.	7.6	159
52	Direct regio- and stereoselective synthesis of squalene 2,3;22,23-dioxide using dioxiranes. Tetrahedron Letters, 2005, 46, 8459-8462.	0.7	21
53	Selective Oxidation of Acetylenic 1,4-Diols with Dioxiranes in Comparison with the Methyltrioxorhenium?Hydrogen Peroxide Oxidant ChemInform, 2005, 36, no.	0.1	0
54	Concerning the Efficient Conversion of Epoxy Alcohols into Epoxy Ketones Using Dioxiranes ChemInform, 2005, 36, no.	0.1	0

#	Article	IF	CITATIONS
55	Selective oxidation of acetylenic 1,4-diols with dioxiranes in comparison with the methyltrioxorhenium–hydrogen peroxide oxidant. Tetrahedron Letters, 2004, 45, 8575-8578.	0.7	11
56	Concerning the Efficient Conversion of Epoxy Alcohols into Epoxy Ketones Using Dioxiranes. Journal of Organic Chemistry, 2004, 69, 8510-8513.	1.7	27
57	Oxyfunctionalization of Non-Natural Targets by Dioxiranes. 5. Selective Oxidation of Hydrocarbons Bearing Cyclopropyl Moieties1. Journal of Organic Chemistry, 2003, 68, 7806-7810.	1.7	35
58	Concerning Synthesis of Ring-A Fluorinated Anthracyclines. The Dioxirane Shunt. Synthetic Communications, 2003, 33, 3009-3016.	1.1	26
59	Oxyfunctionalization of Non-Natural Targets by Dioxiranes. 4.1Efficient Oxidation of Binor S Using Methyl(trifluoromethyl)dioxirane. Journal of Organic Chemistry, 2001, 66, 9063-9066.	1.7	24
60	On the hydroxylation of bicyclo[2.1.0]pentane using dioxiranes. Tetrahedron Letters, 2001, 42, 7087-7090.	0.7	28
61	Synthesis and Reactivity of Manganese Tricarbonyl Complexes of the Centropolyindanes 10-Methyltribenzotriquinacene and Fenestrindane. Organometallics, 2000, 19, 2233-2236.	1.1	22
62	Chemo- and diastereoselectivities in the oxidation of cyclopentenols with dimethyldioxirane and methyl(trifluoromethyl)dioxirane. Tetrahedron Letters, 1999, 40, 8023-8027.	0.7	19
63	Oxyfunctionalization of Non-Natural Targets by Dioxiranes. 3.1Efficient Oxidation of Buckminsterfullerene C60with Methyl(trifluoromethyl)dioxirane. Journal of Organic Chemistry, 1999, 64, 8363-8368.	1.7	38
64	High-yield synthesis of nitriles by oxidation of aldehyde N,N-dimethylhydrazones with dimethyldioxirane. Tetrahedron Letters, 1998, 39, 2009-2012.	0.7	25
65	Dioxirane Epoxidations of 1,1-Disubstituted Ethylenes. Probing for Radical Pathways by Computations and Experiments. Journal of Organic Chemistry, 1998, 63, 8565-8569.	1.7	30
66	Epoxidation and Oxygen Insertion Into Alkane Ch Bonds by Dioxirane Do Not Involve Detectable Radical Pathways. Chemistry - A European Journal, 1997, 3, 105-109.	1.7	79
67	Oxyfunctionalization of Non-Natural Targets by Dioxiranes. 2. Selective Bridgehead Dihydroxylation of Fenestrindane1. Journal of Organic Chemistry, 1996, 61, 8681-8684.	1.7	32
68	Selective oxidation of O-isopropylidene derivatives of diols to 2-hydroxy ketones employing dioxiranes. Tetrahedron Letters, 1996, 37, 115-118.	0.7	29
69	On the triggering of free radical reactivity of dimethyldioxirane. Tetrahedron Letters, 1996, 37, 249-252.	0.7	47
70	Oxyfunctionalization of Nonnatural Targets by Dioxiranes. Selective Oxidation of Centropolyindans. Journal of the American Chemical Society, 1994, 116, 2375-2381.	6.6	61
71	Selective oxidation of tertiary-secondary vic-diols to α-hydroxy ketones by dioxiranes. Tetrahedron Letters, 1993, 34, 4559-4562.	0.7	41
72	Regio- and chemoselective epoxidation of fluorinated monoterpenes and sesquiterpenes by dioxiranes. Tetrahedron, 1993, 49, 6299-6308.	1.0	22

#	Article	IF	CITATIONS
73	Selective oxidation of optically active sec,sec-1,2-diols by dioxiranes. A practical method for the synthesis of homochiral .alphahydroxy ketones in high optical purity. Journal of Organic Chemistry, 1993, 58, 3600-3601.	1.7	60
74	Oxidation of acetals, an orthoester, and ethers by dioxiranes through α-CH insertion. Tetrahedron Letters, 1992, 33, 4225-4228.	0.7	62
75	Oxidation of alkynes by dioxiranes. Tetrahedron Letters, 1992, 33, 7929-7932.	0.7	48
76	Oxidations by methyl(trifluoromethyl)dioxirane. 5. Conversion of alcohols into carbonyl compounds. Journal of the American Chemical Society, 1991, 113, 2205-2208.	6.6	79
77	Selective Oxidation of Alcohols by Dioxiranes. Studies in Surface Science and Catalysis, 1991, , 147-154.	1.5	0
78	Oxidation of catechol and of 2,6-di-tert-butylphenol by dioxiranes. Tetrahedron Letters, 1991, 32, 5445-5448.	0.7	39
79	Oxidations by methyl(trifluoromethyl)dioxirane. 3. Selective polyoxyfunctionalization of adamantane. Tetrahedron Letters, 1990, 31, 3067-3070.	0.7	72
80	Oxidations by methyl(trifluoromethyl)dioxirane. 4.1 oxyfunctionalization of aromatic hydrocarbons. Tetrahedron Letters, 1990, 31, 6097-6100.	0.7	57
81	Oxidations by methyl(trifluoromethyl)dioxirane. 2. Oxyfunctionalization of saturated hydrocarbons. Journal of the American Chemical Society, 1989, 111, 6749-6757.	6.6	293