
## **Christine Vogel**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2328084/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Insights into the regulation of protein abundance from proteomic and transcriptomic analyses.<br>Nature Reviews Genetics, 2012, 13, 227-232.                                                            | 7.7 | 3,228     |
| 2  | K63 polyubiquitination is a new modulator of the oxidative stress response. Nature Structural and<br>Molecular Biology, 2015, 22, 116-123.                                                              | 3.6 | 162       |
| 3  | Differential dynamics of the mammalian <scp>mRNA</scp> and protein expression response to misfolding stress. Molecular Systems Biology, 2016, 12, 855.                                                  | 3.2 | 154       |
| 4  | Protein Expression Regulation under Oxidative Stress. Molecular and Cellular Proteomics, 2011, 10, M111.009217.                                                                                         | 2.5 | 113       |
| 5  | iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery. Npj<br>Systems Biology and Applications, 2019, 5, 22.                                                     | 1.4 | 79        |
| 6  | High-throughput analyses of hnRNP H1 dissects its multi-functional aspect. RNA Biology, 2016, 13, 400-411.                                                                                              | 1.5 | 50        |
| 7  | BONLAC: A combinatorial proteomic technique to measure stimulus-induced translational profiles in brain slices. Neuropharmacology, 2016, 100, 76-89.                                                    | 2.0 | 47        |
| 8  | New insights into the cellular temporal response to proteostatic stress. ELife, 2018, 7, .                                                                                                              | 2.8 | 47        |
| 9  | Exploiting Interdata Relationships in Next-generation Proteomics Analysis. Molecular and Cellular Proteomics, 2019, 18, S5-S14.                                                                         | 2.5 | 39        |
| 10 | Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons. ELife, 2019, 8, .                                                 | 2.8 | 30        |
| 11 | Quantifying gene expression: the importance of being subtle. Molecular Systems Biology, 2016, 12, 885.                                                                                                  | 3.2 | 29        |
| 12 | Phenazines Regulate Nap-Dependent Denitrification in Pseudomonas aeruginosa Biofilms. Journal of<br>Bacteriology, 2018, 200, .                                                                          | 1.0 | 29        |
| 13 | Site-Specific K63 Ubiquitinomics Provides Insights into Translation Regulation under Stress. Journal of Proteome Research, 2019, 18, 309-318.                                                           | 1.8 | 29        |
| 14 | Label-Free Protein Quantitation Using Weighted Spectral Counting. Methods in Molecular Biology, 2012, 893, 321-341.                                                                                     | 0.4 | 26        |
| 15 | Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule<br>Proteins. Biomolecules, 2015, 5, 1441-1466.                                                      | 1.8 | 26        |
| 16 | Condition-Specific Modeling of Biophysical Parameters Advances Inference of Regulatory Networks.<br>Cell Reports, 2018, 23, 376-388.                                                                    | 2.9 | 23        |
| 17 | Polyubiquitin Chains Linked by Lysine Residue 48 (K48) Selectively Target Oxidized Proteins <i>In<br/>Vivo</i> . Antioxidants and Redox Signaling, 2019, 31, 1133-1149.                                 | 2.5 | 22        |
| 18 | Structural impact of K63 ubiquitin on yeast translocating ribosomes under oxidative stress.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22157-22166. | 3.3 | 21        |

CHRISTINE VOGEL

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Nucleobindins and encoded peptides: From cell signaling to physiology. Advances in Protein Chemistry and Structural Biology, 2019, 116, 91-133.                                                         | 1.0  | 19        |
| 20 | Translation's coming of age. Molecular Systems Biology, 2011, 7, 498.                                                                                                                                   | 3.2  | 17        |
| 21 | Protein Expression Under Pressure. Science, 2013, 342, 1052-1053.                                                                                                                                       | 6.0  | 16        |
| 22 | PTMscape: an open source tool to predict generic post-translational modifications and map<br>modification crosstalk in protein domains and biological processes. Molecular Omics, 2018, 14,<br>197-209. | 1.4  | 12        |
| 23 | Prevaccination Glycan Markers of Response to an Influenza Vaccine Implicate the Complement<br>Pathway. Journal of Proteome Research, 2022, 21, 1974-1985.                                               | 1.8  | 12        |
| 24 | Evaluation of determinants of the serological response to the quadrivalent splitâ€inactivated influenza vaccine. Molecular Systems Biology, 2022, 18, e10724.                                           | 3.2  | 11        |
| 25 | PECAplus: statistical analysis of time-dependent regulatory changes in dynamic single-omics and dual-omics experiments. Npj Systems Biology and Applications, 2018, 4, 3.                               | 1.4  | 10        |
| 26 | New Proteomic Signatures to Distinguish Between Zika and Dengue Infections. Molecular and Cellular Proteomics, 2021, 20, 100052.                                                                        | 2.5  | 10        |
| 27 | New horizons in the stormy sea of multimodal single-cell data integration. Molecular Cell, 2022, 82, 248-259.                                                                                           | 4.5  | 9         |
| 28 | Mass spectrometry analysis of K63-ubiquitinated targets in response to oxidative stress. Data in Brief, 2015, 4, 130-134.                                                                               | 0.5  | 8         |
| 29 | Simple Method to Quantify Protein Abundances from 1000 Cells. ACS Omega, 2020, 5, 15537-15546.                                                                                                          | 1.6  | 6         |
| 30 | Time-course proteomics dataset monitoring HeLa cells subjected to DTT induced endoplasmic reticulum stress. Data in Brief, 2016, 8, 1168-1172.                                                          | 0.5  | 5         |
| 31 | Integration of large-scale multi-omic datasets: A protein-centric view. Current Opinion in Systems<br>Biology, 2018, 11, 74-81.                                                                         | 1.3  | 5         |
| 32 | EBprotV2: A Perseus Plugin for Differential Protein Abundance Analysis of Labeling-Based Quantitative<br>Proteomics Data. Journal of Proteome Research, 2019, 18, 748-752.                              | 1.8  | 5         |
| 33 | "Structuromics― another step toward a holistic view of the cell. Cell, 2021, 184, 301-303.                                                                                                              | 13.5 | 5         |
| 34 | Quantifying protein (dis)order. Science, 2017, 355, 794-795.                                                                                                                                            | 6.0  | 3         |
| 35 | Linking Marine Ecosystem Services to the North Sea's Energy Fields in Transnational Marine Spatial<br>Planning. Environments - MDPI, 2018, 5, 67.                                                       | 1.5  | 3         |
| 36 | A protein entric approach for exome variant aggregation enables sensitive association analysis with clinical outcomes. Human Mutation, 2020, 41, 934-945.                                               | 1.1  | 3         |

| #  | Article                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Systems Approaches to the Eukaryotic Stress Response. PLoS Computational Biology, 2016, 12, e1004757.                                                 | 1.5 | 1         |
| 38 | Integrated multi-omics analysis of RB-loss identifies widespread cellular programming and synthetic weaknesses. Communications Biology, 2021, 4, 977. | 2.0 | 1         |
| 39 | Deciphering the effect of Endoplasmic Reticulum (ER) stress on nearâ€mitochondrial localized translation. FASEB Journal, 2018, 32, 543.19.            | 0.2 | Ο         |