
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2327514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Micro-RNA and Proteomic Profiles of Plasma-Derived Exosomes from Irradiated Mice Reveal Molecular Changes Preventing Apoptosis in Neonatal Cerebellum. International Journal of Molecular Sciences, 2022, 23, 2169.	1.8	8
2	A systems radiation biology approach to unravel the role of chronic low-dose-rate gamma-irradiation in inducing premature senescence in endothelial cells. PLoS ONE, 2022, 17, e0265281.	1.1	4
3	MiRNA-Mediated Fibrosis in the Out-of-Target Heart following Partial-Body Irradiation. Cancers, 2022, 14, 3463.	1.7	4
4	lonizing radiation-induced circulatory and metabolic diseases. Environment International, 2021, 146, 106235.	4.8	69
5	The Coming of Age for Big Data in Systems Radiobiology, an Engineering Perspective. Big Data, 2021, 9, 63-71.	2.1	2
6	A Five-Year report on the conception and establishment of the MSc Radiation Biology at the Technical University of Munich. International Journal of Radiation Biology, 2021, 97, 256-264.	1.0	0
7	Isolation of Proteins from Extracellular Vesicles (EVs) for Mass Spectrometry-Based Proteomic Analyses. Methods in Molecular Biology, 2021, 2261, 207-212.	0.4	1
8	Quantitative Proteomic Analysis Using Formalin-Fixed, Paraffin-Embedded (FFPE) Human Cardiac Tissue. Methods in Molecular Biology, 2021, 2261, 525-533.	0.4	2
9	Posterior subcapsular cataracts are a late effect after acute exposure to 0.5 Gy ionizing radiation in mice. International Journal of Radiation Biology, 2021, 97, 529-540.	1.0	5
10	Out-of-Field Hippocampus from Partial-Body Irradiated Mice Displays Changes in Multi-Omics Profile and Defects in Neurogenesis. International Journal of Molecular Sciences, 2021, 22, 4290.	1.8	5
11	Twenty years of proteomics in radiation biology – a look back. International Journal of Radiation Biology, 2021, , 1-5.	1.0	1
12	Data-Independent Acquisition Proteomics Reveals Long-Term Biomarkers in the Serum of C57BL/6J Mice Following Local High-Dose Heart Irradiation. Frontiers in Public Health, 2021, 9, 678856.	1.3	4
13	Activation of PPARα by Fenofibrate Attenuates the Effect of Local Heart High Dose Irradiation on the Mouse Cardiac Proteome. Biomedicines, 2021, 9, 1845.	1.4	5
14	CREB Signaling Mediates Dose-Dependent Radiation Response in the Murine Hippocampus Two Years after Total Body Exposure. Journal of Proteome Research, 2020, 19, 337-345.	1.8	16
15	Data independent acquisition mass spectrometry of irradiated mouse lung endothelial cells reveals a STAT-associated inflammatory response. International Journal of Radiation Biology, 2020, 96, 642-650.	1.0	5
16	Phenotypic and Functional Characteristics of Exosomes Derived from Irradiated Mouse Organs and Their Role in the Mechanisms Driving Non-Targeted Effects. International Journal of Molecular Sciences, 2020, 21, 8389.	1.8	28
17	Chronic Occupational Exposure to Ionizing Radiation Induces Alterations in the Structure and Metabolism of the Heart: A Proteomic Analysis of Human Formalin-Fixed Paraffin-Embedded (FFPE) Cardiac Tissue. International Journal of Molecular Sciences, 2020, 21, 6832.	1.8	17
18	Radiation Response of Human Cardiac Endothelial Cells Reveals a Central Role of the cGAS-STING Pathway in the Development of Inflammation. Proteomes, 2020, 8, 30.	1.7	13

#	Article	IF	CITATIONS
19	Low-dose radiation therapy for COVID-19 pneumopathy: what is the evidence?. Strahlentherapie Und Onkologie, 2020, 196, 679-682.	1.0	39
20	Intravital optoacoustic and ultrasound bio-microscopy reveal radiation-inhibited skull angiogenesis. Bone, 2020, 133, 115251.	1.4	19
21	Radiation Exposure of Peripheral Mononuclear Blood Cells Alters the Composition and Function of Secreted Extracellular Vesicles. International Journal of Molecular Sciences, 2020, 21, 2336.	1.8	18
22	Comparison of methods to isolate proteins from extracellular vesicles for mass spectrometry-based proteomic analyses. Analytical Biochemistry, 2019, 584, 113390.	1.1	39
23	Hyperacetylation of Cardiac Mitochondrial Proteins Is Associated with Metabolic Impairment and Sirtuin Downregulation after Chronic Total Body Irradiation of ApoE -/- Mice. International Journal of Molecular Sciences, 2019, 20, 5239.	1.8	27
24	DNA damage accumulation during fractionated low-dose radiation compromises hippocampal neurogenesis. Radiotherapy and Oncology, 2019, 137, 45-54.	0.3	24
25	Big data in radiation biology and epidemiology; an overview of the historical and contemporary landscape of data and biomaterial archives. International Journal of Radiation Biology, 2019, 95, 861-878.	1.0	16
26	Mathematical Modelling and Effect Size Analysis in Support of Searching for the Proteomic Signature of Radiotherapy Toxicity. , 2019, , .		0
27	Combined Treatment with Low-Dose Ionizing Radiation and Ketamine Induces Adverse Changes in CA1 Neuronal Structure in Male Murine Hippocampi. International Journal of Molecular Sciences, 2019, 20, 6103.	1.8	7
28	Lifetime study in mice after acute low-dose ionizing radiation: a multifactorial study with special focus on cataract risk. Radiation and Environmental Biophysics, 2018, 57, 99-113.	0.6	30
29	PPARα Is Necessary for Radiation-Induced Activation of Noncanonical TGFβ Signaling in the Heart. Journal of Proteome Research, 2018, 17, 1677-1689.	1.8	17
30	Integrative multiomics study for validation of mechanisms in radiation-induced ischemic heart disease in Mayak workers. PLoS ONE, 2018, 13, e0209626.	1.1	11
31	Ionizing radiation biomarkers in epidemiological studies – An update. Mutation Research - Reviews in Mutation Research, 2017, 771, 59-84.	2.4	118
32	Quantitative changes in the protein and miRNA cargo of plasma exosome-like vesicles after exposure to ionizing radiation. International Journal of Radiation Biology, 2017, 93, 569-580.	1.0	63
33	Using proteomics to explore the effects of radiation on the heart - impacts for medicine. Expert Review of Proteomics, 2017, 14, 277-279.	1.3	5
34	Long non-coding RNA PARTICLE bridges histone and DNA methylation. Scientific Reports, 2017, 7, 1790.	1.6	43
35	Radiation alters the cargo of exosomes released from squamous head and neck cancer cells to promote migration of recipient cells. Scientific Reports, 2017, 7, 12423.	1.6	92
36	Proteomics landscape of radiation-induced cardiovascular disease: somewhere over the paradigm. Expert Review of Proteomics, 2017, 14, 987-996.	1.3	11

#	Article	IF	CITATIONS
37	Radiation-Induced Endothelial Inflammation Is Transferred via the Secretome to Recipient Cells in a STAT-Mediated Process. Journal of Proteome Research, 2017, 16, 3903-3916.	1.8	18
38	PARTICLE triplexes cluster in the tumor suppressor WWOX and may extend throughout the human genome. Scientific Reports, 2017, 7, 7163.	1.6	27
39	Proteome analysis of irradiated endothelial cells reveals persistent alteration in protein degradation and the RhoGDI and NO signalling pathways. International Journal of Radiation Biology, 2017, 93, 920-928.	1.0	16
40	Role of TGF Beta and PPAR Alpha Signaling Pathways in Radiation Response of Locally Exposed Heart: Integrated Global Transcriptomics and Proteomics Analysis. Journal of Proteome Research, 2017, 16, 307-318.	1.8	39
41	Low-dose radiation differentially regulates protein acetylation and histone deacetylase expression in human coronary artery endothelial cells. International Journal of Radiation Biology, 2017, 93, 156-164.	1.0	12
42	Differential Impact of Single-Dose Fe Ion and X-Ray Irradiation on Endothelial Cell Transcriptomic and Proteomic Responses. Frontiers in Pharmacology, 2017, 8, 570.	1.6	18
43	A dose-dependent perturbation in cardiac energy metabolism is linked to radiation-induced ischemic heart disease in Mayak nuclear workers. Oncotarget, 2017, 8, 9067-9078.	0.8	50
44	Proteomics approaches to investigate cancer radiotherapy outcome: slow train coming. Translational Cancer Research, 2017, 6, S779-S788.	0.4	11
45	Abstract 5849: Exosomes promote survival and migration in squamous head and neck cancer cells after ionizing radiation: Evidence for a bystander effect. , 2017, , .		0
46	Pathology and biology of radiation-induced cardiac disease. Journal of Radiation Research, 2016, 57, 439-448.	0.8	135
47	Effects of ionizing radiation on the mammalian brain. Mutation Research - Reviews in Mutation Research, 2016, 770, 219-230.	2.4	71
48	Brain Radiation Information Data Exchange (BRIDE): integration of experimental data from low-dose ionising radiation research for pathway discovery. BMC Bioinformatics, 2016, 17, 212.	1.2	5
49	In-Utero Low-Dose Irradiation Leads to Persistent Alterations in the Mouse Heart Proteome. PLoS ONE, 2016, 11, e0156952.	1.1	13
50	Chronic low-dose-rate ionising radiation affects the hippocampal phosphoproteome in the ApoEâ^'/â^' Alzheimer's mouse model. Oncotarget, 2016, 7, 71817-71832.	0.8	38
51	Age-related effects of X-ray irradiation on mouse hippocampus. Oncotarget, 2016, 7, 28040-28058.	0.8	44
52	Transcriptomic and proteomic analysis of mouse radiation-induced acute myeloid leukaemia (AML). Oncotarget, 2016, 7, 40461-40480.	0.8	6
53	Quantitative and integrated proteome and microRNA analysis of endothelial replicative senescence. Journal of Proteomics, 2015, 126, 12-23.	1.2	25
54	Long-term consequences of in utero irradiated mice indicate proteomic changes in synaptic plasticity related signalling. Proteome Science, 2015, 13, 26.	0.7	11

#	Article	IF	CITATIONS
55	lonizing radiation induces immediate protein acetylation changes in human cardiac microvascular endothelial cells. Journal of Radiation Research, 2015, 56, 623-632.	0.8	21
56	Unique proteomic signature for radiation sensitive patients; a comparative study between normo-sensitive and radiation sensitive breast cancer patients. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 776, 128-135.	0.4	14
57	Total Body Exposure to Low-Dose Ionizing Radiation Induces Long-Term Alterations to the Liver Proteome of Neonatally Exposed Mice. Journal of Proteome Research, 2015, 14, 366-373.	1.8	33
58	Integrative Proteomics and Targeted Transcriptomics Analyses in Cardiac Endothelial Cells Unravel Mechanisms of Long-Term Radiation-Induced Vascular Dysfunction. Journal of Proteome Research, 2015, 14, 1203-1219.	1.8	86
59	Late proliferating and inflammatory effects on murine microvascular heart and lung endothelial cells after irradiation. Radiotherapy and Oncology, 2015, 117, 376-381.	0.3	42
60	Low-Dose Ionizing Radiation Rapidly Affects Mitochondrial and Synaptic Signaling Pathways in Murine Hippocampus and Cortex. Journal of Proteome Research, 2015, 14, 2055-2064.	1.8	45
61	Low-dose ionising radiation and cardiovascular diseases – Strategies for molecular epidemiological studies in Europe. Mutation Research - Reviews in Mutation Research, 2015, 764, 90-100.	2.4	64
62	Neonatal Irradiation Leads to Persistent Proteome Alterations Involved in Synaptic Plasticity in the Mouse Hippocampus and Cortex. Journal of Proteome Research, 2015, 14, 4674-4686.	1.8	23
63	Qualitative and Quantitative Proteomic Analysis of Formalin-Fixed Paraffin-Embedded (FFPE) Tissue. Methods in Molecular Biology, 2015, 1295, 109-115.	0.4	5
64	Acceleration of atherogenesis in <i>ApoEâ^'/â^'</i> mice exposed to acute or low-dose-rate ionizing radiation. Oncotarget, 2015, 6, 31263-31271.	0.8	45
65	Adhesion Molecule Expression and Function of Primary Endothelial Cells in Benign and Malignant Tissues Correlates with Proliferation. PLoS ONE, 2014, 9, e91808.	1.1	20
66	The cognitive defects of neonatally irradiated mice are accompanied by changed synaptic plasticity, adult neurogenesis and neuroinflammation. Molecular Neurodegeneration, 2014, 9, 57.	4.4	95
67	Proteomics in radiation research: present status and future perspectives. Radiation and Environmental Biophysics, 2014, 53, 31-38.	0.6	26
68	Proteomic Strategies: SILAC and 2D-DIGE—Powerful Tool to Investigate Cellular Alterations. Methods in Molecular Biology, 2014, 1101, 369-392.	0.4	1
69	Ionising Radiation Immediately Impairs Synaptic Plasticity-Associated Cytoskeletal Signalling Pathways in HT22 Cells and in Mouse Brain: An In Vitro/In Vivo Comparison Study. PLoS ONE, 2014, 9, e110464.	1.1	43
70	Long-term effects of acute low-dose ionizing radiation on the neonatal mouse heart: a proteomic study. Radiation and Environmental Biophysics, 2013, 52, 451-461.	0.6	26
71	Long-term effects of ionising radiation on the brain: cause for concern?. Radiation and Environmental Biophysics, 2013, 52, 5-16.	0.6	42
72	Comment on "Dose-responses from multi-model inference for the non-cancer disease mortality of atomic bomb survivors―(Radiat. Environ. Biophys (2012) 51:165–178) by Schöllnberger et al Radiation and Environmental Biophysics, 2013, 52, 157-159.	0.6	10

#	Article	IF	CITATIONS
73	Integrative proteomic and microRNA analysis of primary human coronary artery endothelial cells exposed to low-dose gamma radiation. Radiation and Environmental Biophysics, 2013, 52, 87-98.	0.6	34
74	Quantitative proteomic analysis reveals induction of premature senescence in human umbilical vein endothelial cells exposed to chronic low-dose rate gamma radiation. Proteomics, 2013, 13, 1096-1107.	1.3	102
75	lonising radiation induces persistent alterations in the cardiac mitochondrial function of C57BL/6 mice 40weeks after local heart exposure. Radiotherapy and Oncology, 2013, 106, 404-410.	0.3	65
76	PPAR Alpha: A Novel Radiation Target in Locally Exposed <i>Mus musculus</i> Heart Revealed by Quantitative Proteomics. Journal of Proteome Research, 2013, 12, 2700-2714.	1.8	56
77	lonizing Radiation Effects on Cells, Organelles and Tissues on Proteome Level. Advances in Experimental Medicine and Biology, 2013, 990, 37-48.	0.8	21
78	The PI3K/Akt/mTOR Pathway Is Implicated in the Premature Senescence of Primary Human Endothelial Cells Exposed to Chronic Radiation. PLoS ONE, 2013, 8, e70024.	1.1	82
79	Cell Survival Following Radiation Exposure Requires miR-525-3p Mediated Suppression of ARRB1 and TXN1. PLoS ONE, 2013, 8, e77484.	1.1	16
80	Systematic Review and Meta-analysis of Circulatory Disease from Exposure to Low-Level Ionizing Radiation and Estimates of Potential Population Mortality Risks. Environmental Health Perspectives, 2012, 120, 1503-1511.	2.8	296
81	Estimating Risk of Circulatory Disease: Little et al. Respond. Environmental Health Perspectives, 2012, 120, .	2.8	3
82	Ionizing radiation biomarkers for potential use in epidemiological studies. Mutation Research - Reviews in Mutation Research, 2012, 751, 258-286.	2.4	181
83	Nucleic acids from long-term preserved FFPE tissues are suitable for downstream analyses. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2012, 460, 131-140.	1.4	153
84	Proteomic analysis by SILAC and 2D-DIGE reveals radiation-induced endothelial response: Four key pathways. Journal of Proteomics, 2012, 75, 2319-2330.	1.2	41
85	Label-free protein profiling of formalin-fixed paraffin-embedded (FFPE) heart tissue reveals immediate mitochondrial impairment after ionising radiation. Journal of Proteomics, 2012, 75, 2384-2395.	1.2	35
86	Radiation–Induced Signaling Results in Mitochondrial Impairment in Mouse Heart at 4 Weeks after Exposure to X-Rays. PLoS ONE, 2011, 6, e27811.	1.1	134
87	Low-dose irradiation causes rapid alterations to the proteome of the human endothelial cell line EA.hy926. Radiation and Environmental Biophysics, 2011, 50, 155-166.	0.6	49
88	Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation. Proteomics, 2011, 11, 3299-3311.	1.3	87
89	The European Radiobiological Archives: Online Access to Data from Radiobiological Experiments. Radiation Research, 2011, 175, 526-531.	0.7	21
90	Review and meta-analysis of epidemiological associations between low/moderate doses of ionizing radiation and circulatory disease risks, and their possible mechanisms. Radiation and Environmental Biophysics, 2010, 49, 139-153.	0.6	132

SOILE TAPIO

#	Article	IF	CITATIONS
91	Use of proteomics in radiobiological research: current state of the art. Radiation and Environmental Biophysics, 2010, 49, 1-4.	0.6	19
92	Archiving lessons from radiobiology. Nature, 2010, 468, 634-634.	13.7	7
93	Formalin-Fixed Paraffin-Embedded (FFPE) Proteome Analysis Using Gel-Free and Gel-Based Proteomics. Journal of Proteome Research, 2010, 9, 4710-4720.	1.8	82
94	Comments: The non-cancer mortality experience of male workers at British Nuclear Fuels plc, 1946–2005. International Journal of Epidemiology, 2009, 38, 1159-1164.	0.9	5
95	Major histopathological patterns of lung cancer related to arsenic exposure in German uranium miners. International Archives of Occupational and Environmental Health, 2009, 82, 867-875.	1.1	19
96	Overexpression of PTK6 (breast tumor kinase) protein—a prognostic factor for long-term breast cancer survival—is not due to gene amplification. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2009, 455, 117-123.	1.4	14
97	Tumorigenesis. Medical Radiology, 2009, , 1-17.	0.0	0
98	Molecular information obtained from radiobiological tissue archives: achievements of the past and visions of the future. Radiation and Environmental Biophysics, 2008, 47, 183-187.	0.6	17
99	Prognostic value of protein tyrosine kinase 6 (PTK6) for long-term survival of breast cancer patients. British Journal of Cancer, 2008, 99, 1089-1095.	2.9	45
100	Progress in updating the European Radiobiology Archives. International Journal of Radiation Biology, 2008, 84, 930-936.	1.0	20
101	A Systematic Review of Epidemiological Associations between Low and Moderate Doses of Ionizing Radiation and Late Cardiovascular Effects, and Their Possible Mechanisms. Radiation Research, 2008, 169, 99-109.	0.7	164
102	Radioadaptive response revisited. Radiation and Environmental Biophysics, 2007, 46, 1-12.	0.6	147
103	Arsenic in the aetiology of cancer. Mutation Research - Reviews in Mutation Research, 2006, 612, 215-246.	2.4	282
104	Combined effects of gamma radiation and arsenite on the proteome of human TK6 lymphoblastoid cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2005, 581, 141-152.	0.9	23
105	Starvation in vivo for aminoacyl-tRNA increases the spatial separation between the two ribosomal subunits. Cell, 1994, 79, 629-638.	13.5	48
106	Base 2661 in Escherichia coli 23S rRNA influences the binding of elongation factor Tu during protein synthesis in vivo. FEBS Journal, 1991, 202, 981-984.	0.2	21
107	Antisuppression by mutations in elongation factor Tu. FEBS Journal, 1990, 188, 339-346.	0.2	13
108	Impaired in vitro kinetics of EF-Tu mutant Aa. FEBS Journal, 1990, 188, 347-354.	0.2	18

#	Article	IF	Citations
109	Antagonistic effects of mutant elongation factor Tu and ribosomal protein S12 on control of translational accuracy, suppression and cellular growth. Biochimie, 1988, 70, 273-281.	1.3	30
110	Mutant EF-Tu increases missense error in vitro. Molecular Genetics and Genomics, 1986, 205, 186-188.	2.4	67