Kristen W Yeom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2327501/publications.pdf

Version: 2024-02-01

100 4,350 25 61 papers citations h-index g-index

102 102 102 7166
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Age-dependent Intracranial Artery Morphology in Healthy Children. Clinical Neuroradiology, 2022, 32, 49-56.	1.9	1
2	Machine learning approach to differentiation of peripheral schwannomas and neurofibromas: A multi-center study. Neuro-Oncology, 2022, 24, 601-609.	1.2	8
3	MRI Correlates of Ototoxicity in the Auditory Pathway in Children Treated for Medulloblastoma. Otology and Neurotology, 2022, 43, e97-e104.	1.3	2
4	Radiomic signatures of posterior fossa ependymoma: Molecular subgroups and risk profiles. Neuro-Oncology, 2022, 24, 986-994.	1.2	8
5	Automatic Lung Nodule Segmentation and Intra-Nodular Heterogeneity Image Generation. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 2570-2581.	6.3	13
6	Attention-guided deep learning for gestational age prediction using fetal brain MRI. Scientific Reports, 2022, 12, 1408.	3.3	15
7	Improved prediction of postoperative pediatric cerebellar mutism syndrome using an artificial neural network. Neuro-Oncology Advances, 2022, 4, vdac003.	0.7	2
8	GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature, 2022, 603, 934-941.	27.8	339
9	ADC Histogram Analysis of Pediatric Low-Grade Glioma Treated with Selumetinib: A Report from the Pediatric Brain Tumor Consortium. American Journal of Neuroradiology, 2022, 43, 455-461.	2.4	3
10	Spatiotemporal changes in along-tract profilometry of cerebellar peduncles in cerebellar mutism syndrome. Neurolmage: Clinical, 2022, 35, 103000.	2.7	3
11	Radiomics Can Distinguish Pediatric Supratentorial Embryonal Tumors, High-Grade Gliomas, and Ependymomas. American Journal of Neuroradiology, 2022, 43, 603-610.	2.4	5
12	Acetazolamide-Challenged Arterial Spin Labeling Detects Augmented Cerebrovascular Reserve After Surgery for Moyamoya. Stroke, 2022, 53, 1354-1362.	2.0	6
13	MRI Radiogenomics of Pediatric Medulloblastoma: A Multicenter Study. Radiology, 2022, 304, 406-416.	7.3	27
14	MR Imaging of Pediatric Brain Tumors. Diagnostics, 2022, 12, 961.	2.6	9
15	IMG-02. Improved prediction of postoperative paediatric cerebellar mutism syndrome using an artificial neural network. Neuro-Oncology, 2022, 24, i76-i77.	1.2	O
16	Simultaneous time of flight-MRA and T2* imaging for cerebrovascular MRI. Neuroradiology, 2021, 63, 243-251.	2.2	2
17	Artificial intelligence in stroke imaging: Current and future perspectives. Clinical Imaging, 2021, 69, 246-254.	1.5	43
18	MRI-based radiomics for prognosis of pediatric diffuse intrinsic pontine glioma: an international study. Neuro-Oncology Advances, 2021, 3, vdab042.	0.7	14

#	Article	IF	CITATIONS
19	Artificial intelligence for automatic cerebral ventricle segmentation and volume calculation: a clinical tool for the evaluation of pediatric hydrocephalus. Journal of Neurosurgery: Pediatrics, 2021, 27, 131-138.	1.3	17
20	Radiomics of Pediatric Low-Grade Gliomas: Toward a Pretherapeutic Differentiation of <i>BRAF-</i> Mutated and <i>BRAF</i> -Fused Tumors. American Journal of Neuroradiology, 2021, 42, 759-765.	2.4	32
21	Multi-classifier-based identification of COVID-19 from chest computed tomography using generalizable and interpretable radiomics features. European Journal of Radiology, 2021, 136, 109552.	2.6	25
22	EPCT-14. GD2 CAR T-CELLS MEDIATE CLINICAL ACTIVITY AND MANAGEABLE TOXICITY IN CHILDREN AND YOUNG ADULTS WITH H3K27M-MUTATED DIPG AND SPINAL CORD DMG. Neuro-Oncology, 2021, 23, i49-i50.	1.2	6
23	Machine-Learning Approach to Differentiation of Benign and Malignant Peripheral Nerve Sheath Tumors: A Multicenter Study. Neurosurgery, 2021, 89, 509-517.	1.1	7
24	Abstract CT031: GD2 CAR T cells mediate clinical activity and manageable toxicity in children and young adults with DIPG and H3K27M-mutated diffuse midline gliomas., 2021,,.		7
25	Listening to Mom in the NICU: effects of increased maternal speech exposure on language outcomes and white matter development in infants born very preterm. Trials, 2021, 22, 444.	1.6	7
26	Radiomic Phenotypes Distinguish Atypical Teratoid/Rhabdoid Tumors from Medulloblastoma. American Journal of Neuroradiology, 2021, 42, 1702-1708.	2.4	12
27	Machine Assist for Pediatric Posterior Fossa Tumor Diagnosis: A Multinational Study. Neurosurgery, 2021, 89, 892-900.	1.1	8
28	Current Perspectives of Artificial Intelligence in Pediatric Neuroradiology: An Overview. Frontiers in Radiology, $2021,1,$	2.0	5
29	Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT. Npj Digital Medicine, 2021, 4, 11.	10.9	34
30	Clinical Artificial Intelligence Applications in Radiology. Radiologic Clinics of North America, 2021, 59, 1003-1012.	1.8	5
31	Early Diffusion Magnetic Resonance Imaging Changes in Normal-Appearing Brain in Pediatric Moyamoya Disease. Neurosurgery, 2020, 86, 530-537.	1.1	9
32	Molecular correlates of cerebellar mutism syndrome in medulloblastoma. Neuro-Oncology, 2020, 22, 290-297.	1.2	21
33	Deep Learning for Automated Classification ofÂInferior Vena Cava Filter Types on Radiographs. Journal of Vascular and Interventional Radiology, 2020, 31, 66-73.	0.5	15
34	Altered cerebral perfusion in children with Langerhans cell histiocytosis after chemotherapy. Pediatric Blood and Cancer, 2020, 67, e28104.	1.5	1
35	Children with epilepsy demonstrate macro- and microstructural changes in the thalamus, putamen, and amygdala. Neuroradiology, 2020, 62, 389-397.	2.2	12
36	Congenital Hearing Loss Is Associated With a High Incidence of Central Nervous System Abnormalities. Otology and Neurotology, 2020, 41, 1397-1405.	1.3	2

#	Article	IF	Citations
37	Brain Iron Assessment after Ferumoxytol-enhanced MRI in Children and Young Adults with Arteriovenous Malformations: A Case-Control Study. Radiology, 2020, 297, 438-446.	7.3	6
38	Deep Learning for Pediatric Posterior Fossa Tumor Detection and Classification: A Multi-Institutional Study. American Journal of Neuroradiology, 2020, 41, 1718-1725.	2.4	31
39	Decoding and Systematization of Medical Imaging Features of Multiple Human Malignancies. Radiology Imaging Cancer, 2020, 2, e190079.	1.6	5
40	Neonatal genetic epilepsies display convergent white matter microstructural abnormalities. Epilepsia, 2020, 61, e192-e197.	5.1	3
41	Association of Pediatric Acute-Onset Neuropsychiatric Syndrome With Microstructural Differences in Brain Regions Detected via Diffusion-Weighted Magnetic Resonance Imaging. JAMA Network Open, 2020, 3, e204063.	5.9	25
42	Response assessment in paediatric low-grade glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncology, The, 2020, 21, e305-e316.	10.7	115
43	Neonatal Brain Microstructure and Machine-Learning-Based Prediction of Early Language Development in Children Born VeryÂPreterm. Pediatric Neurology, 2020, 108, 86-92.	2.1	23
44	Variable Refocusing Flip Angle Single-Shot Imaging for Sedation-Free Fast Brain MRI. American Journal of Neuroradiology, 2020, 41, 1256-1262.	2.4	1
45	End-to-end automatic differentiation of the coronavirus disease 2019 (COVID-19) from viral pneumonia based on chest CT. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2516-2524.	6.4	64
46	Cerebral volume and diffusion MRI changes in children with sensorineural hearing loss. NeuroImage: Clinical, 2020, 27, 102328.	2.7	7
47	Utilization of Novel High-Resolution, MRI-Based Vascular Imaging Modality for Preoperative Stereoelectroencephalography Planning in Children: A Technical Note. Stereotactic and Functional Neurosurgery, 2020, 98, 1-7.	1.5	5
48	Radiology artificial intelligence, a systematic evaluation of methods (RAISE): a systematic review protocol. Insights Into Imaging, 2020, 11, 133.	3.4	9
49	IMG-03. RESPONSE ASSESSMENT IN PEDIATRIC LOW-GRADE GLIOMA: RECOMMENDATIONS FROM THE RESPONSE ASSESSMENT IN PEDIATRIC NEURO-ONCOLOGY (RAPNO) WORKING GROUP. Neuro-Oncology, 2020, 22, iii355-iii355.	1.2	0
50	Deep Learning for Automated Delineation of Pediatric Cerebral Arteries on Pre-operative Brain Magnetic Resonance Imaging. Frontiers in Surgery, 2020, 7, 517375.	1.4	6
51	Learning-based single-step quantitative susceptibility mapping reconstruction without brain extraction. Neurolmage, 2019, 202, 116064.	4.2	44
52	Prediction of Gait Impairment in Toddlers Born Preterm From Near-Term Brain Microstructure Assessed With DTI, Using Exhaustive Feature Selection and Cross-Validation. Frontiers in Human Neuroscience, 2019, 13, 305.	2.0	9
53	Deep Learning–Assisted Diagnosis of Cerebral Aneurysms Using the HeadXNet Model. JAMA Network Open, 2019, 2, e195600.	5.9	163
54	A Review of Chronic Leukoencephalopathy among Survivors of Childhood Cancer. Pediatric Neurology, 2019, 101, 2-10.	2.1	11

#	Article	IF	CITATIONS
55	Arterial spin-labeling cerebral perfusion changes after revascularization surgery in pediatric moyamoya disease and syndrome. Journal of Neurosurgery: Pediatrics, 2019, 23, 486-492.	1.3	19
56	Long-Term Supratentorial Radiologic Effects of Surgery and Local Radiation in Children with Infratentorial Ependymoma. World Neurosurgery, 2019, 122, e1300-e1304.	1.3	3
57	Quantification of Macrophages in High-Grade Gliomas by Using Ferumoxytol-enhanced MRI: A Pilot Study. Radiology, 2019, 290, 198-206.	7.3	61
58	Age-Dependent White Matter Characteristics of the Cerebellar Peduncles from Infancy Through Adolescence. Cerebellum, 2019, 18, 372-387.	2.5	23
59	MR Imaging–Based Radiomic Signatures of Distinct Molecular Subgroups of Medulloblastoma. American Journal of Neuroradiology, 2019, 40, 154-161.	2.4	87
60	Reduced field of view echo-planar imaging diffusion tensor MRI for pediatric spinal tumors. Journal of Neurosurgery: Spine, 2019, 31, 607-615.	1.7	4
61	Diffusion tensor magnetic resonance imaging of the optic nerves in pediatric hydrocephalus. Neurosurgical Focus, 2019, 47, E16.	2.3	2
62	Ferumoxytol-enhanced MRI for surveillance of pediatric cerebral arteriovenous malformations. Journal of Neurosurgery: Pediatrics, 2019, 24, 407-414.	1.3	4
63	Prediction of cognitive and motor development in preterm children using exhaustive feature selection and cross-validation of near-term white matter microstructure. NeuroImage: Clinical, 2018, 17, 667-679.	2.7	31
64	Brain Diffusion Abnormalities in Children with Tension-Type and Migraine-Type Headaches. American Journal of Neuroradiology, 2018, 39, 935-941.	2.4	9
65	Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches. American Journal of Neuroradiology, 2018, 39, 208-216.	2.4	281
66	The Utility of Collaterals as a Biomarker in Pediatric Unilateral Intracranial Arteriopathy. Pediatric Neurology, 2018, 78, 27-34.	2.1	8
67	Framework for shape analysis of white matter fiber bundles. Neurolmage, 2018, 167, 466-477.	4.2	20
68	Isolated Intraorbital Frontosphenoidal Synostosis. Journal of Craniofacial Surgery, 2018, 29, 82-87.	0.7	5
69	Clinical Evaluation of Silent T1-Weighted MRI and Silent MR Angiography of the Brain. American Journal of Roentgenology, 2018, 210, 404-411.	2.2	35
70	RADI-03. ASL PERFUSION IMAGING OF THE FRONTAL LOBES PREDICTS THE OCCURRENCE AND RESOLUTION OF POSTERIOR FOSSA SYNDROME. Neuro-Oncology, 2018, 20, i170-i170.	1.2	1
71	Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Medicine, 2018, 15, e1002699.	8.4	409
72	Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Medicine, 2018, 15, e1002686.	8.4	773

#	Article	IF	Citations
73	Rapid-sequence brain magnetic resonance imaging for Chiari I abnormality. Journal of Neurosurgery: Pediatrics, 2018, 22, 158-164.	1.3	11
74	Revealing subâ€voxel motions of brain tissue using phaseâ€based amplified MRI (aMRI). Magnetic Resonance in Medicine, 2018, 80, 2549-2559.	3.0	61
75	Safety of Dynamic Magnetic Resonance Imaging of the Cervical Spine in Children Performed without Neurosurgical Supervision. World Neurosurgery, 2018, 116, e1188-e1193.	1.3	7
76	Development of an optogenetic toolkit for neural circuit dissection in squirrel monkeys. Scientific Reports, 2018, 8, 6775.	3.3	28
77	High-resolution 3D volumetric contrast-enhanced MR angiography with a blood pool agent (ferumoxytol) for diagnostic evaluation of pediatric brain arteriovenous malformations. Journal of Neurosurgery: Pediatrics, 2018, 22, 251-260.	1.3	15
78	Sclerotherapy for lymphatic malformations of the head and neck in the pediatric population. Journal of NeuroInterventional Surgery, 2017, 9, 1023-1026.	3.3	29
79	Brain Perfusion and Diffusion Abnormalities in Children Treated for Posterior Fossa Brain Tumors. Journal of Pediatrics, 2017, 185, 173-180.e3.	1.8	21
80	Chemoradiation impairs normal developmental cortical thinning in medulloblastoma. Journal of Neuro-Oncology, 2017, 133, 429-434.	2.9	5
81	The role of angiogenesis in Group 3 medulloblastoma pathogenesis and survival. Neuro-Oncology, 2017, 19, 1217-1227.	1.2	53
82	A PET/MR Imaging Approach for the Integrated Assessment of Chemotherapy-induced Brain, Heart, and Bone Injuries in Pediatric Cancer Survivors: A Pilot Study. Radiology, 2017, 285, 971-979.	7.3	9
83	Gray Matter Growth Is Accompanied by Increasing Blood Flow and Decreasing Apparent Diffusion Coefficient during Childhood. American Journal of Neuroradiology, 2016, 37, 1738-1744.	2.4	21
84	Computational Identification of Tumor Anatomic Location Associated with Survival in 2 Large Cohorts of Human Primary Glioblastomas. American Journal of Neuroradiology, 2016, 37, 621-628.	2.4	27
85	Case Series: Fractional Anisotropy Profiles of the Cerebellar Peduncles in Adolescents Born Preterm With Ventricular Dilation. Journal of Child Neurology, 2016, 31, 321-327.	1.4	5
86	Intensity-Corrected Dual-Echo Echo-Planar Imaging (DE-EPI) for Improved Pediatric Brain Diffusion Imaging. PLoS ONE, 2015, 10, e0129325.	2.5	1
87	Effect of Number of Acquisitions in Diffusion Tensor Imaging of the Pediatric Brain: Optimizing Scan Time and Diagnostic Experience. Journal of Neuroimaging, 2015, 25, 296-302.	2.0	5
88	Congenital Brain Malformations in the Neonatal and Early Infancy Period. Seminars in Ultrasound, CT and MRI, 2015, 36, 97-119.	1.5	6
89	Citrate concentrations increase with hypoperfusion in pediatric diffuse intrinsic pontine glioma. Journal of Neuro-Oncology, 2015, 122, 383-389.	2.9	14
90	Tract Profiles of the Cerebellar White Matter Pathways in Children and Adolescents. Cerebellum, 2015, 14, 613-623.	2.5	27

#	Article	IF	Citations
91	Focal Cerebral Arteriopathy: The Face With Many Names. Pediatric Neurology, 2015, 53, 247-252.	2.1	14
92	Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine, 2015, 10, 993-1018.	3.3	98
93	Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Science Translational Medicine, 2015, 7, 303ra138.	12.4	227
94	Neonatal brain microstructure correlates of neurodevelopment and gait in preterm children 18–22 mo of age: an MRI and DTI study. Pediatric Research, 2015, 78, 700-708.	2.3	45
95	Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. Journal of Magnetic Resonance Imaging, 2015, 42, 23-41.	3.4	407
96	Successful Treatment with Temozolomide Combined with Chemoradiotherapy and Surgery of a Metastatic Undifferentiated Soft Tissue Sarcoma with Relapse in the Central Nervous System of a Young Adult. Journal of Adolescent and Young Adult Oncology, 2014, 3, 100-103.	1.3	0
97	Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies. Medical Physics, 2014, 41, 052303.	3.0	23
98	Tectal pineal cyst in a 1-year-old girl. Human Pathology, 2014, 45, 653-656.	2.0	3
99	Distinctive MRI Features of Pediatric Medulloblastoma Subtypes. American Journal of Roentgenology, 2013, 200, 895-903.	2.2	91
100	Comparison of Readout-Segmented Echo-Planar Imaging (EPI) and Single-Shot EPI in Clinical Application of Diffusion-Weighted Imaging of the Pediatric Brain. American Journal of Roentgenology, 2013, 200, W437-W443.	2.2	69