Pieter Jm Leenen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2327480/publications.pdf

Version: 2024-02-01

153	9,802	47	94
papers	citations	h-index	g-index
155	155	155	15639
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Intraâ€articular injection of triamcinolone acetonide sustains macrophage levels and aggravates osteophytosis during degenerative joint disease in mice. British Journal of Pharmacology, 2022, 179, 2771-2784.	2.7	6
2	Systemic Listeria monocytogenes infection in aged mice induces long-term neuroinflammation: the role of miR-155. Immunity and Ageing, 2022, 19, .	1.8	3
3	Macrophage phenotypes and monocyte subsets after destabilization of the medial meniscus in mice. Journal of Orthopaedic Research, 2021, 39, 2270-2280.	1.2	14
4	Classic and new mediators for <i>in vitro</i> modelling of human macrophages. Journal of Leukocyte Biology, 2021, 109, 549-560.	1.5	11
5	Keep your macrophages fit for healthy aging. Cell Metabolism, 2021, 33, 468-470.	7.2	O
6	IL-23 receptor deficiency results in lower bone mass via indirect regulation of bone formation. Scientific Reports, 2021, 11, 10244.	1.6	4
7	Hair Cortisol, Obesity and the Immune System: Results From a 3 Year Longitudinal Study. Journal of the Endocrine Society, 2021, 5, A14-A14.	0.1	O
8	Brown Seaweed Food Supplementation: Effects on Allergy and Inflammation and Its Consequences. Nutrients, 2021, 13, 2613.	1.7	16
9	The Impact of Obesity and Lifestyle on the Immune System and Susceptibility to Infections Such as COVID-19. Frontiers in Nutrition, 2020, 7, 597600.	1.6	57
10	BSCI-25. THE ROLE OF THE IFN \hat{i}^3 PATHWAY IN BREAST CANCER BRAIN METASTASIS FORMATION. Neuro-Oncology Advances, 2019, 1, i5-i5.	0.4	0
11	Dendritic cell line AP284 supports Th17 amplification. Cellular Immunology, 2019, 337, 54-61.	1.4	2
12	Mycobacterium tuberculosis clinical isolates of the Beijing and East-African Indian lineage induce fundamentally different host responses in mice compared to H37Rv. Scientific Reports, 2019, 9, 19922.	1.6	14
13	Metabolic Alterations in Aging Macrophages: Ingredients for Inflammaging?. Trends in Immunology, 2019, 40, 113-127.	2.9	125
14	The interplay between critical transcription factors and microRNAs in the control of normal and malignant myelopoiesis. Cancer Letters, 2018, 427, 28-37.	3.2	21
15	Regulation of Intracellular Triiodothyronine Is Essential for Optimal Macrophage Function. Endocrinology, 2018, 159, 2241-2252.	1.4	43
16	Three-dimensional tubule formation assay as therapeutic screening model for ocular microvascular disorders. Eye, 2018, 32, 1380-1386.	1.1	5
17	Comparative proteomic analysis of cat eye syndrome critical region protein 1- function in tumor-associated macrophages and immune response regulation of glial tumors. Oncotarget, 2018, 9, 33500-33514.	0.8	18
18	Immunotherapy Added to Antibiotic Treatment Reduces Relapse of Disease in a Mouse Model of Tuberculosis. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 233-241.	1.4	22

#	Article	IF	CITATIONS
19	CECR1-mediated cross talk between macrophages and vascular mural cells promotes neovascularization in malignant glioma. Oncogene, 2017, 36, 5356-5368.	2.6	60
20	Activation of CECR1 in M2-like TAMs promotes paracrine stimulation-mediated glial tumor progression. Neuro-Oncology, 2017, 19, now251.	0.6	44
21	Pharmacodynamic Monitoring of Tacrolimus-Based Immunosuppression in CD14+ Monocytes After Kidney Transplantation. Therapeutic Drug Monitoring, 2017, 39, 463-471.	1.0	6
22	Unacylated ghrelin modulates circulating angiogenic cell number in insulin-resistant states. Diabetology and Metabolic Syndrome, 2017, 9, 43.	1.2	1
23	Frontline Science: Tryptophan restriction arrests B cell development and enhances microbial diversity in WT and prematurely aging <i>Ercc1â°/ î"7</i> mice. Journal of Leukocyte Biology, 2017, 101, 811-821.	1.5	26
24	Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Frontiers in Immunology, 2017, 8, 294.	2.2	56
25	CD16+ Monocytes and Skewed Macrophage Polarization toward M2 Type Hallmark Heart Transplant Acute Cellular Rejection. Frontiers in Immunology, 2017, 8, 346.	2.2	30
26	The Effect of Tacrolimus and Mycophenolic Acid on CD14+ Monocyte Activation and Function. PLoS ONE, 2017, 12, e0170806.	1.1	39
27	Supplementation with Lactobacillus plantarum WCFS1 Prevents Decline of Mucus Barrier in Colon of Accelerated Aging Ercc1â°'ſΰ7 Mice. Frontiers in Immunology, 2016, 7, 408.	2.2	49
28	Langerhans cell histiocytosis is a neoplasm and consequently its recurrence is a relapse: In memory of Bob Arceci. Pediatric Blood and Cancer, 2016, 63, 1704-1712.	0.8	46
29	The Immune Pathogenesis of Type 1 Diabetes: Not Only Thinking Outside the Cell but Also Outside the Islet and Out of the Box. Diabetes, 2016, 65, 2130-2133.	0.3	16
30	Interaction of mouse splenocytes and macrophages with bacterial strains in vitro: the effect of age in the immune response. Beneficial Microbes, 2016, 7, 275-287.	1.0	10
31	Study on inflammation-related genes and microRNAs, with special emphasis on the vascular repair factor HGF and miR-574-3p, in monocytes and serum of patients with T2D. Diabetology and Metabolic Syndrome, 2016, 8, 6.	1.2	22
32	IL- $1\hat{l}^2$ differently stimulates proliferation and multinucleation of distinct mouse bone marrow osteoclast precursor subsets. Journal of Leukocyte Biology, 2016, 100, 513-523.	1.5	44
33	Immunology of Central Nervous System Pathogens. , 2016, , 173-183.		0
34	Lifelong challenge of calcium homeostasis in male mice lacking TRPV5 leads to changes in bone and calcium metabolism. Oncotarget, 2016, 7, 24928-24941.	0.8	6
35	Type 2 Diabetes Monocyte MicroRNA and mRNA Expression: Dyslipidemia Associates with Increased Differentiation-Related Genes but Not Inflammatory Activation. PLoS ONE, 2015, 10, e0129421.	1.1	23
36	Inverse Monocytic Subset Profile in Blood and Tissue During Human Heart Transplant Rejection With a Simultaneous Predominance of M2 Macrophages at the Tissue Level. Journal of Heart and Lung Transplantation, 2015, 34, S295.	0.3	0

#	Article	IF	Citations
37	Mâ€CSF Priming of Osteoclast Precursors Can Cause Osteoclastogenesisâ€Insensitivity, Which Can be Prevented and Overcome on Bone. Journal of Cellular Physiology, 2015, 230, 210-225.	2.0	42
38	Decreased Serum Level of miR-146a as Sign of Chronic Inflammation in Type 2 Diabetic Patients. PLoS ONE, 2014, 9, e115209.	1.1	97
39	Immune Suppression via Glucocorticoid-Stimulated Monocytes: A Novel Mechanism To Cope with Inflammation. Journal of Immunology, 2014, 193, 1090-1099.	0.4	25
40	Human monocytes produce interferon-gamma upon stimulation with LPS. Cytokine, 2014, 67, 7-12.	1.4	50
41	Kupffer Cells in Health and Disease. , 2014, , 217-247.		7
42	Arginase activity is associated with fibrosis in experimental infection with Taenia crassiceps, but does not play a major role in resistance to infection. Experimental Parasitology, 2013, 135, 599-605.	0.5	7
43	Relapse of tuberculosis versus primary tuberculosis; course, pathogenesis and therapy in mice. Tuberculosis, 2013, 93, 213-221.	0.8	12
44	Desâ€acyl ghrelin analogs prevent highâ€fatâ€dietâ€induced dysregulation of glucose homeostasis. FASEB Journal, 2013, 27, 1690-1700.	0.2	68
45	A Shift towards Pro-Inflammatory CD16+ Monocyte Subsets with Preserved Cytokine Production Potential after Kidney Transplantation. PLoS ONE, 2013, 8, e70152.	1.1	30
46	MicroRNA-Mediated Down-Regulation of M-CSF Receptor Contributes to Maturation of Mouse Monocyte-Derived Dendritic Cells. Frontiers in Immunology, 2013, 4, 353.	2.2	29
47	The Kinetics of Plasmacytoid Dendritic Cell Accumulation in the Pancreas of the NOD Mouse during the Early Phases of Insulitis. PLoS ONE, 2013, 8, e55071.	1.1	18
48	Reduced numbers of dendritic cells with a tolerogenic phenotype in the prediabetic pancreas of NOD mice. Journal of Leukocyte Biology, 2012, 92, 1207-1213.	1.5	19
49	Kupffer cells express a unique combination of phenotypic and functional characteristics compared with splenic and peritoneal macrophages. Journal of Leukocyte Biology, 2012, 92, 723-733.	1.5	82
50	Atherosclerotic Plaque Stability Is Affected by the Chemokine CXCL10 in Both Mice and Humans. International Journal of Inflammation, 2011, 2011, 1-9.	0.9	43
51	Myeloid lî $^{\circ}$ BÎ $^{\pm}$ Deficiency Promotes Atherogenesis by Enhancing Leukocyte Recruitment to the Plaques. PLoS ONE, 2011, 6, e22327.	1.1	30
52	Intravenously delivered glucocorticoid liposomes inhibit osteoclast activity and bone erosion in murine antigen-induced arthritis. Journal of Controlled Release, 2011, 152, 363-369.	4.8	41
53	S100A8 enhances osteoclastic bone resorption in vitro through activation of Tollâ€like receptor 4: Implications for bone destruction in murine antigenâ€induced arthritis. Arthritis and Rheumatism, 2011, 63, 1365-1375.	6.7	81
54	Langerhans cell histiocytosis: fascinating dynamics of the dendritic cell–macrophage lineage. Immunological Reviews, 2010, 234, 213-232.	2.8	102

#	Article	IF	Citations
55	Heterogeneity in a mouse model of histiocytosis: transformation of Langerin+ dendritic cells, macrophages, and precursors. Journal of Leukocyte Biology, 2010, 87, 949-958.	1.5	5
56	Severe <i>Listeria monocytogenes</i> Infection Induces Development of Monocytes with Distinct Phenotypic and Functional Features. Journal of Immunology, 2010, 185, 2432-2441.	0.4	30
57	Nomenclature of monocytes and dendritic cells in blood. Blood, 2010, 116, e74-e80.	0.6	2,046
58	IFN- \hat{I}^3 triggers CCR2-independent monocyte entry into the brain during systemic infection by virulent Listeria monocytogenes. Brain, Behavior, and Immunity, 2010, 24, 919-929.	2.0	33
59	Synthetic Human Chorionic Gonadotropin–Related Oligopeptides Impair Early Innate Immune Responses to <i>Listeria monocytogenes</i> i>in Mice. Journal of Infectious Diseases, 2010, 201, 1072-1080.	1.9	40
60	Differentiation of Bone Marrow-Derived Endothelial Progenitor Cells Is Shifted into a Proinflammatory Phenotype by Hyperglycemia. Molecular Medicine, 2009, 15, 152-159.	1.9	93
61	Chorionic gonadotropin alleviates thioglycollate-induced peritonitis by affecting macrophage function. Journal of Leukocyte Biology, 2009, 86, 361-370.	1.5	13
62	Keratinocyte Growth Factor Improves Allogeneic Bone Marrow Engraftment through a CD4+Foxp3+Regulatory T Cell-Dependent Mechanism. Journal of Immunology, 2009, 182, 7364-7369.	0.4	8
63	Myeloid blasts are the mouse bone marrow cells prone to differentiate into osteoclasts. Journal of Leukocyte Biology, 2009, 85, 919-927.	1.5	47
64	Grâ€1 antibody induces STAT signaling, macrophage marker expression and abrogation of myeloidâ€derived suppressor cell activity in BM cells. European Journal of Immunology, 2009, 39, 3538-3551.	1.6	83
65	Plasmacytoid dendritic cells in autoimmune diabetes – Potential tools for immunotherapy. Immunobiology, 2009, 214, 791-799.	0.8	31
66	Chorionic gonadotropin induces dendritic cells to express a tolerogenic phenotype. Journal of Leukocyte Biology, 2008, 83, 894-901.	1.5	78
67	A primer on the immune system in the pathogenesis and treatment of atherosclerosis. EuroIntervention, 2008, 4, 378-390.	1.4	9
68	Keratinocyte Growth Factor Induces Expansion of Murine Peripheral CD4+Foxp3+Regulatory T Cells and Increases Their Thymic Output. Journal of Immunology, 2007, 179, 7424-7430.	0.4	19
69	Chorionic gonadotropin can enhance innate immunity by stimulating macrophage function. Journal of Leukocyte Biology, 2007, 82, 926-933.	1.5	64
70	Shear stress–induced changes in atherosclerotic plaque composition are modulated by chemokines. Journal of Clinical Investigation, 2007, 117, 616-626.	3.9	136
71	Differential Role of Basal Keratinocytes in UV-Induced Immunosuppression and Skin Cancer. Molecular and Cellular Biology, 2006, 26, 8515-8526.	1.1	52
72	Angiogenic Murine Endothelial Progenitor Cells Are Derived From a Myeloid Bone Marrow Fraction and Can Be Identified by Endothelial NO Synthase Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1760-1767.	1.1	72

#	Article	IF	Citations
73	The dermal microenvironment induces the expression of the alternative activation marker CD301/mMGL in mononuclear phagocytes, independent of IL-4/IL-13 signaling. Journal of Leukocyte Biology, 2006, 80, 838-849.	1.5	57
74	Diabetes-prone NOD mice show an expanded subpopulation of mature circulating monocytes, which preferentially develop into macrophage-like cells in vitro. Journal of Leukocyte Biology, 2005, 78, 70-79.	1.5	34
75	Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood, 2005, 106, 1843-1850.	0.6	320
76	Macrophages at intermediate stage of maturation produce high levels of IL-12 p40 upon stimulation with Leishmania. Microbes and Infection, 2005, 7, 213-223.	1.0	10
77	Dendritic cells and macrophages are essential for the retention of lymphocytes in (peri)-insulitis of the nonobese diabetic mouse: a phagocyte depletion study. Laboratory Investigation, 2005, 85, 487-501.	1.7	70
78	NOD mice have a severly impaired ability to recruit leukocytes into sites of inflammation. European Journal of Immunology, 2005, 35, 225-235.	1.6	39
79	Histiocyte function and development in the normal immune system. , 2005, , 40-65.		6
80	Macrophages in the murine pancreas and their involvement in fetal endocrine development in vitro. Journal of Leukocyte Biology, 2005, 78, 845-852.	1.5	76
81	Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. Journal of Leukocyte Biology, 2005, 77, 321-327.	1.5	216
82	Bone Marrow Precursors of Nonobese Diabetic Mice Develop into Defective Macrophage-Like Dendritic Cells In Vitro. Journal of Immunology, 2004, 173, 4342-4351.	0.4	39
83	Subpopulations of Mouse Blood Monocytes Differ in Maturation Stage and Inflammatory Response. Journal of Immunology, 2004, 172, 4410-4417.	0.4	981
84	Invasion of the Central Nervous System by Intracellular Bacteria. Clinical Microbiology Reviews, 2004, 17, 323-347.	5.7	211
85	The Ly-6Chigh Monocyte Subpopulation Transports <i>Listeria monocytogenes</i> into the Brain during Systemic Infection of Mice. Journal of Immunology, 2004, 172, 4418-4424.	0.4	141
86	Cellular composition of pancreas-associated lymphoid tissue during human fetal pancreatic development. Histopathology, 2004, 45, 291-297.	1.6	8
87	Macrophages and Dendritic Cells Constitute a Major Subpopulation of Cells in the Mouse Dermis. Journal of Investigative Dermatology, 2004, 123, 876-879.	0.3	100
88	Defective up-regulation of CD49d in final maturation of NOD mouse macrophages. European Journal of Immunology, 2004, 34, 3465-3476.	1.6	7
89	Interleukin-3Rα+ Myeloid Dendritic Cells and Mast Cells Develop Simultaneously from Different Bone Marrow Precursors in Cultures with Interleukin-3. Journal of Investigative Dermatology, 2003, 121, 280-288.	0.3	10
90	Langerhans-cell histiocytosis 'insight into DC biology'. Trends in Immunology, 2003, 24, 190-196.	2.9	131

#	Article	IF	Citations
91	Response to Fadeel and Henter: Langerhans cell histiocytosis: a combination of carcinogenesis and inflammation. Trends in Immunology, 2003, 24, 410-411.	2.9	5
92	Immature macrophages derived from mouse bone marrow produce large amounts of IL-12p40 after LPS stimulation. Journal of Leukocyte Biology, 2003, 74, 857-867.	1.5	22
93	Developmental stages of myeloid dendritic cells in mouse bone marrow. International Immunology, 2003, 15, 515-524.	1.8	73
94	Transcription factor complex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells. Genes and Development, 2002, 16, 1721-1737.	2.7	119
95	Expression of Cell Cycle–Related Gene Products in Langerhans Cell Histiocytosis. Journal of Pediatric Hematology/Oncology, 2002, 24, 727-732.	0.3	68
96	Allergen-induced accumulation of airway dendritic cells is supported by an increase in CD31hiLy-6Cneg bone marrow precursors in a mouse model of asthma. Blood, 2002, 100, 3663-3671.	0.6	129
97	T-cell education in autoimmune diabetes: teachers and students. Trends in Immunology, 2002, 23, 40-46.	2.9	54
98	Islet abnormalities in the pathogenesis of autoimmune diabetes. Trends in Endocrinology and Metabolism, 2002, 13, 209-214.	3.1	36
99	A subfraction of B220+ cells in murine bone marrow and spleen does not belong to the B cell lineage but has dendritic cell characteristics. European Journal of Immunology, 2002, 32, 686.	1.6	66
100	Differential Ultraviolet-B-Induced Immunomodulation in XPA, XPC, and CSB DNA Repair-Deficient Mice. Journal of Investigative Dermatology, 2001, 117, 141-146.	0.3	30
101	Sex Steroids Influence Pancreatic Islet Hypertrophy and Subsequent Autoimmune Infiltration in Nonobese Diabetic (NOD) and NODscid Mice. Laboratory Investigation, 2001, 81, 231-239.	1.7	36
102	CD13/aminopeptidase N involvement in dendritic cell maturation. Leukemia, 2001, 15, 190-191.	3.3	4
103	Cytokine production induced by binding and processing of calcium oxalate crystals in cultured macrophages. American Journal of Kidney Diseases, 2001, 38, 331-338.	2.1	56
104	Leukocyte-facilitated entry of intracellular pathogens into the central nervous system. Microbes and Infection, 2000, 2, 1609-1618.	1.0	49
105	Subsets of Macrophages and Dendritic Cells in Nonobese Diabetic Mouse Pancreatic Inflammatory Infiltrates: Correlation with the Development of Diabetes. Laboratory Investigation, 2000, 80, 23-30.	1.7	58
106	Islet Abnormalities Associated with an Early Influx of Dendritic Cells and Macrophages in NOD and NODscid Mice. Laboratory Investigation, 2000, 80, 769-777.	1.7	57
107	UVB irradiation modulates systemic immune responses by affecting cytokine production of antigen-presenting cells. International Immunology, 2000, 12, 1531-1538.	1.8	35
108	Commitment to the Monocytic Lineage Occurs in the Absence of the Transcription Factor PU.1. Blood, 1999, 93, 2849-2858.	0.6	47

#	Article	IF	CITATIONS
109	Langerhans' cell histiocytosis is caused by dysregulation of the E-cadherin-β-catenin cascade: A hypothesis. Immunology and Cell Biology, 1999, 77, 460-467.	1.0	13
110	Different effect of granulocyte colony-stimulating factor or bacterial infection on bone-marrow cells of cyclophosphamide-treated or irradiated mice. Immunology, 1999, 97, 601-610.	2.0	9
111	Brain parenchyma vessels and the angiotensin system. Brain Research, 1999, 830, 101-112.	1.1	22
112	Pericytes and periendothelial cells of brain parenchyma vessels co-express aminopeptidase N, aminopeptidase A, and nestin. Journal of Neuroscience Research, 1999, 58, 367-378.	1.3	129
113	Splenic Dendritic Cells From the Non-obese Diabetic Mouse Induce a Prolonged Proliferation of Syngeneic T Cells. A Role for an Impaired Apoptosis of NOD T cells?. Journal of Autoimmunity, 1999, 13, 373-382.	3.0	30
114	Surface interleukin-10 inhibits listericidal activity by primary macrophages. Journal of Leukocyte Biology, 1999, 66, 961-967.	1.5	21
115	Commitment to the Monocytic Lineage Occurs in the Absence of the Transcription Factor PU.1. Blood, 1999, 93, 2849-2858.	0.6	5
116	Bone marrow cellular composition in Listeria monocytogenes infected mice detected using ER-MP12 and ER-MP20 antibodies: a flow cytometric alternative to differential counting. Journal of Immunological Methods, 1998, 217, 27-39.	0.6	44
117	Macrophage Lineage Cells in Inflammation: Characterization by Colony-Stimulating Factor-1 (CSF-1) Receptor (c-Fms), ER-MP58, and ER-MP20 (Ly-6C) Expression. Blood, 1998, 92, 1423-1431.	0.6	61
118	Thymic Dendritic Cells Are Primary Targets for the Oncogenic Virus SL3-3. Journal of Virology, 1998, 72, 10118-10125.	1.5	9
119	Macrophage Lineage Cells in Inflammation: Characterization by Colony-Stimulating Factor-1 (CSF-1) Receptor (c-Fms), ER-MP58, and ER-MP20 (Ly-6C) Expression. Blood, 1998, 92, 1423-1431.	0.6	3
120	Dendritic cells and macrophages in the pituitary and the gonads. Evidence for their role in the fine regulation of the reproductive endocrine response. European Journal of Endocrinology, 1997, 136, 8-24.	1.9	70
121	A population of interstitial cells in the anterior pituitary with a hematopoietic origin and a rapid turnover: a relationship with folliculo–stellate cells?. Journal of Neuroimmunology, 1997, 78, 184-197.	1.1	28
122	Facilitated engraftment of human hematopoietic cells in severe combined immunodeficient mice following a single injection of Cl2MDP liposomes. Leukemia, 1997, 11, 1049-1054.	3.3	34
123	Structural identification of the hematopoietic progenitor antigen ER-MP12 as the vascular endothelial adhesion molecule PECAM-1 (CD31). European Journal of Immunology, 1997, 27, 509-514.	1.6	48
124	Mouse Spleen Dendritic Cells. Advances in Experimental Medicine and Biology, 1997, , 91-95.	0.8	8
125	Dendritic Cells in the Autoimmune Insulitis in NOD Mouse Models of Diabetes. Advances in Experimental Medicine and Biology, 1997, 417, 291-294.	0.8	19
126	Immune Response in Dendritic Cell Depleted Mice. Advances in Experimental Medicine and Biology, 1997, 417, 547-550.	0.8	0

#	Article	IF	Citations
127	The Macrophage: Basic and Clinical Aspects. Immunobiology, 1996, 195, 401-406.	0.8	2
128	Complement Receptor Type 3 Mediates Phagocytosis and Killing of Listeria monocytogenesby a TNF-α- and IFN-γ- Stimulated Macrophage Precursor Hybrid. Cellular Immunology, 1996, 169, 1-6.	1.4	26
129	High-level expression of the ER-MP58 antigen on mouse bone marrow hematopoietic progenitor cells marks commitment to the myeloid lineage. European Journal of Immunology, 1996, 26, 2850-2858.	1.6	28
130	Dietary n-3 fatty acids increase spleen size and postendotoxin circulating TNF in mice; role of macrophages, macrophage precursors, and colony-stimulating factor-1. Journal of Immunology, 1996, 157, 5569-73.	0.4	24
131	Distinct mouse bone marrow macrophage precursors identified by differential expression of ER-MP12 and ER-MP20 antigens. European Journal of Immunology, 1994, 24, 2279-2284.	1.6	127
132	Inhibition of proliferation and differentiation during early T cell development by anti-transferrin receptor antibody. European Journal of Immunology, 1994, 24, 2896-2902.	1.6	52
133	A monoclonal antibody (ER-HR3) against murine macrophages. II. Biochemical and functional aspects of the ER-HR3 antigen. Cell and Tissue Research, 1994, 275, 577-585.	1.5	14
134	Transferrin Receptor Expression as a Marker of Immature Cycling Thymocytes in the Mouse. Cellular Immunology, 1994, 159, 331-339.	1.4	50
135	Markers of mouse macrophage development detected by monoclonal antibodies. Journal of Immunological Methods, 1994, 174, 5-19.	0.6	326
136	Gentamicin kills intracellular Listeria monocytogenes. Infection and Immunity, 1994, 62, 2222-2228.	1.0	131
137	Immunohistochemical characterization of monocytes-macrophages and dendritic cells involved in the initiation of the insulitis and beta-cell destruction in NOD mice. Diabetes, 1994, 43, 667-675.	0.3	97
138	Tissue distribution and cellular distribution of liposomes encapsulating muramyltripeptide phosphatidyl ethanolamide. Biotherapy (Dordrecht, Netherlands), 1993, 7, 71-78.	0.7	7
139	ER-MP12 antigen, a new cell surface marker on mouse bone marrow cells with thymus-repopulating ability: I. Intrathymic repopulating ability of ER-MP12-positive bone marrow cells. International Immunology, 1993, 5, 1093-1098.	1.8	21
140	ER-MP12 antigen, a new cell surface marker on mouse bone marrow cells with thymus-repopulating ability: II. Thymus-homing ability and phenotypic characterization of ER-MP12-positive bone marrow cells. International Immunology, 1993, 5, 1099-1107.	1.8	19
141	Heterogeneity of Mononuclear Phagocytes. Blood Cell Biochemistry, 1993, , 29-85.	0.3	17
142	The monoclonal antibody ER-BMDM1 recognizes a macrophage and dendritic cell differentiation antigen with aminopeptidase activity. European Journal of Immunology, 1992, 22, 1567-1572.	1.6	34
143	Improved fixation of frozen lympho-haemopoietic tissue sections with hexazotized Pararosaniline. The Histochemical Journal, 1991, 23, 392-401.	0.6	23
144	Murine macrophage precursor characterization. I. Production, phenotype and differentiation of macrophage precursor hybrids. European Journal of Immunology, 1990, 20, 15-25.	1.6	47

#	Article	IF	CITATIONS
145	Murine macrophage precursor characterization. II. Monoclonal antibodies against macrophage precursor antigens. European Journal of Immunology, 1990, 20, 27-34.	1.6	128
146	Differential inhibition of macrophage proliferation by anti-transferrin receptor antibody ER-MP21: Correlation to macrophage differentiation stage. Experimental Cell Research, 1990, 189, 55-63.	1.2	13
147	Characterization of mouse macrophage differentiation antigens by monoclonal antibodies. Cellular Immunology, 1989, 124, 77-94.	1.4	10
148	Murine Macrophage Cell Line AP284 Presents Antigen to Cloned MT4+, Lyt-2â^' T Cells in vitro and in vivo. Immunobiology, 1988, 178, 261-274.	0.8	3
149	Single-cell immuno- \hat{l}^2 -galactosidase staining of heterogeneous populations. Practical application on limited cell numbers. The Histochemical Journal, 1987, 19, 497-503.	0.6	14
150	The expression of differentiation antigens by Rauscher virus-induced erythroid, lymphoid and myeloid cell lines. Leukemia Research, 1987, 11, 25-30.	0.4	5
151	Murine macrophage cell lines can be ordered in a linear differentiation sequence. Differentiation, 1986, 32, 157-164.	1.0	73
152	Comparison of the eye lens proteins from embryonic and adult spiny dogfish (Squalus acanthias). Experimental Eye Research, 1981, 32, 467-474.	1.2	15
153	The enzymes of the ammonia assimilation in Pseudomonas aeruginosa. Archives of Microbiology, 1980, 124-124, 197-203.	1.0	58