List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2327439/publications.pdf Version: 2024-02-01

SHAO FELNI

#	Article	IF	CITATIONS
1	Rational Design of Axially Chiral Styreneâ€Based Organocatalysts and Their Application in Catalytic Asymmetric (2+4) Cyclizations. Angewandte Chemie - International Edition, 2022, 61, e202112226.	7.2	49
2	Unveiling the Ï€-Chain Effect on Charge Transfer and Charge Recombination Among Donorâ^'π–Acceptor Material Systems. Journal of Physical Chemistry C, 2022, 126, 1076-1084.	1.5	5
3	Scalable Rhodaelectro-Catalyzed Expedient Access to Seven-Membered Azepino[3,2,1- <i>hi</i>]indoles via [5Â+Â2] C–H/N–H Annulation. CCS Chemistry, 2022, 4, 1858-1870.	4.6	10
4	Cu(I)-Catalyzed Cross-Coupling Rearrangements of Terminal Alkynes with Tropylium Tetrafluoroborate: Facile Access to Barbaralyl-Substituted Allenyl Acid Esters and 7-Alkynyl Cycloheptatrienes. Journal of Organic Chemistry, 2022, 87, 3066-3078.	1.7	1
5	A Practically Unified Electrochemical Strategy for Ni-Catalyzed Decarboxylative Cross-Coupling of Aryl Trimethylammonium Salts. Organic Letters, 2022, 24, 2137-2142.	2.4	19
6	C–H Fluoroalkylsulfinylation/Intramolecular Rearrangement for Precise Synthesis of Fluoroalkyl Sulfoxides. Organic Letters, 2022, 24, 3378-3383.	2.4	7
7	An approach for the synthesis of 2-aryl-3-sulfonyl substituted quinolines through an electrochemical cascade annulation pathway. Green Chemistry, 2022, 24, 4425-4431.	4.6	16
8	Ultrafast study of substituted-position-dependent excited-state evolution in benzophenone-carbazole dyads. Physical Chemistry Chemical Physics, 2022, 24, 14623-14630.	1.3	6
9	Practical asymmetric amine nucleophilic approach for the modular construction of protected \hat{l}_{\pm} -quaternary amino acids. Chemical Science, 2022, 13, 6806-6812.	3.7	8
10	Boosting Near-Infrared Photothermal Conversion by Intermolecular Interactions in Isomeric Cocrystals. ACS Applied Materials & amp; Interfaces, 2022, 14, 28781-28791.	4.0	19
11	Scalable Electrochemical Aerobic Oxygenation of Indoles to Isatins without Electron Transfer Mediators by Merging with an Oxygen Reduction Reaction. Organic Letters, 2022, 24, 4229-4233.	2.4	13
12	Near-Infrared Light Triggered a High Temperature Utilizing Donor–Acceptor Cocrystals. Journal of Physical Chemistry Letters, 2022, 13, 6571-6579.	2.1	12
13	Disentangling Multiple Effects on Excitedâ€State Intramolecular Charge Transfer among Asymmetrical Tripartite PPIâ€TPA/PCz Triads. Chemistry - A European Journal, 2021, 27, 1337-1345.	1.7	12
14	Metalâ€Free Catalyzed Cyclization of N â€Methoxybenzamides to Construct Quaternary Carbon ontaining Isoindolinones. Chinese Journal of Chemistry, 2021, 39, 903-908.	2.6	7
15	Constructing deep-blue bis-tridentate Ir(<scp>iii</scp>) phosphors with fluorene-based dianionic chelates. Journal of Materials Chemistry C, 2021, 9, 1318-1325.	2.7	16
16	Regio- and stereoselective electrochemical synthesis of sulfonylated enethers from alkynes and sulfonyl hydrazides. Green Chemistry, 2021, 23, 2420-2426.	4.6	36
17	Naphthalenothiophene Imide-Based Polymer Donor for High-Performance Polymer Solar Cells. Chemistry of Materials, 2021, 33, 1976-1982.	3.2	19
18	Priority of Mixed Diamine Ligands in Cobalt Dithiolene Complex-Catalyzed H2 Evolution: A Theoretical Study. Inorganic Chemistry, 2021, 60, 6688-6695.	1.9	1

#	Article	IF	CITATIONS
19	Propargylic Amination Enabled the Access to Enantioenriched Acyclic α-Quaternary α-Amino Ketones. Journal of the American Chemical Society, 2021, 143, 7629-7634.	6.6	54
20	Revealing the role of 1,2,4-triazolate fragment of blue-emitting bis-tridentate Ir(III) phosphors: photophysical properties, photo-stabilities, and applications. Materials Today Energy, 2021, 20, 100636.	2.5	10
21	Unprecedented Improvement of Near-Infrared Photothermal Conversion Efficiency to 87.2% by Ultrafast Non-radiative Decay of Excited States of Self-Assembly Cocrystal. Journal of Physical Chemistry Letters, 2021, 12, 5796-5801.	2.1	32
22	High Performance NIR OLEDs with Low Efficiency Rollâ€Off by Leveraging Os(II) Phosphors and Exciplex Coâ€Host. Advanced Functional Materials, 2021, 31, 2102787.	7.8	25
23	Longâ€Range Charge Transportation Induced Organic Host–Guest Dual Color Long Persistent Luminescence. Advanced Optical Materials, 2021, 9, 2101337.	3.6	17
24	Electrochemically enabled rhodium-catalyzed [4 + 2] annulations of arenes with alkynes. Green Chemistry, 2021, 23, 9515-9522.	4.6	16
25	Organocatalytic Asymmetric [2 + 4] Cycloadditions of 3-Vinylindoles with ortho-Quinone Methides. Molecules, 2021, 26, 6751.	1.7	6
26	Tailormade Nonradiative Rotation Tuning of the Near-Infrared Photothermal Conversion in Donor–Acceptor Cocrystals. Journal of Physical Chemistry C, 2021, 125, 25462-25469.	1.5	22
27	Boosting Efficiency of Nearâ€Infrared Organic Lightâ€Emitting Diodes with Os(II)â€Based Pyrazinyl Azolate Emitters. Advanced Functional Materials, 2020, 30, 1906738.	7.8	57
28	Iridium(III) Complexes Bearing a Formal Tetradentate Coordination Chelate: Structural Properties and Phosphorescence Fine-Tuned by Ancillaries. Inorganic Chemistry, 2020, 59, 523-532.	1.9	24
29	Highly Chemoselective Access to 2,2′-Diaminobiaryls via Ni-Catalyzed Protecting-Group-Free Coupling of 2-Haloanilines. ACS Catalysis, 2020, 10, 13641-13649.	5.5	11
30	Metal dithiolene complexes in olefin addition and purification, small molecule adsorption, H2 evolution and CO2 reduction. Coordination Chemistry Reviews, 2020, 420, 213398.	9.5	29
31	Thermal-annealing effects on energy level alignment at organic heterojunctions and corresponding voltage losses in all-polymer solar cells. Nano Energy, 2020, 72, 104677.	8.2	16
32	Late-stage C(sp ²)–H and C(sp ³)–H glycosylation of <i>C</i> -aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling. Chemical Science, 2020, 11, 6521-6526.	3.7	76
33	Aggregation-state engineering and emission switching in D–A–D′ AlEgens featuring dual emission, MCL and white electroluminescence. Journal of Materials Chemistry C, 2020, 8, 8061-8068.	2.7	25
34	Lewis Acidic PSbP Pincer Ligand in Pt-Catalyzed 1,6-Enyne Cycloisomerization: A Theoretical Study. Journal of Organic Chemistry, 2019, 84, 9454-9459.	1.7	5
35	Deepâ€Red/Nearâ€Infrared Electroluminescence from Singleâ€Component Chargeâ€Transfer Complex via Thermally Activated Delayed Fluorescence Channel. Advanced Functional Materials, 2019, 29, 1903112.	7.8	59

Chargeâ€Transfer Complexes: Deepâ€Red/Nearâ€Infrared Electroluminescence from Singleâ€Component Chargeâ€Transfer Complex via Thermally Activated Delayed Fluorescence Channel (Adv. Funct. Mater.) Tj ETQq0 0 Ø.&BT /Oværlock 10 T

#	Article	IF	CITATIONS
37	Effects of water vapor and oxygen on non-fullerene small molecule acceptors. Journal of Materials Chemistry C, 2019, 7, 879-886.	2.7	27
38	Ligand-Free Iron-Catalyzed Carbon (sp ²)–Carbon (sp ²) Oxidative Homo-Coupling of Alkenyllithiums. Organic Letters, 2019, 21, 700-704.	2.4	15
39	Arylamine-coumarin based donor-acceptor dyads: Unveiling the relationship between two-photon absorption cross-section and lifetime of singlet excited state intramolecular charge separation. Dyes and Pigments, 2019, 165, 301-307.	2.0	16
40	Silver-promoted regioselective [4+2] annulation reaction of indoles with alkenes to construct dihydropyrimidoindolone scaffolds. Chemical Communications, 2019, 55, 14383-14386.	2.2	21
41	Silver-Mediated Indole (4 + 2) Dearomative Annulation with <i>N</i> -Radicals: A Strategy To Construct Heterocycle-Fused Indolines. ACS Catalysis, 2019, 9, 1680-1685.	5.5	36
42	Copper-Catalyzed Borylative Ring Closing C–C Coupling toward Spiro- and Dispiroheterocycles. ACS Catalysis, 2018, 8, 2833-2838.	5.5	40
43	A novel spiro-annulated benzimidazole host for highly efficient blue phosphorescent organic light-emitting devices. Chemical Communications, 2018, 54, 4541-4544.	2.2	30
44	A mechanism study on the hydrogen evolution reaction catalyzed by molybdenum disulfide complexes. Chemical Communications, 2018, 54, 1113-1116.	2.2	15
45	Tuning electrical properties of phenanthroimidazole derivatives to construct multifunctional deep-blue electroluminescent materials. Journal of Materials Chemistry C, 2018, 6, 3584-3592.	2.7	57
46	Computational Studies on the Mechanism of Rhâ€Catalyzed Decarbonylative [5+2–1] Reaction between Isatins and Alkynes: High Selectivity by Directing Group. European Journal of Organic Chemistry, 2018, 2018, 806-814.	1.2	8
47	The role of Si in Ir(SiNN) catalyst and chemoselectivity of dehydrogenative borylation over hydroborylation: A theoretical study. Journal of Organometallic Chemistry, 2018, 877, 59-67.	0.8	3
48	Achieving efficient violet-blue electroluminescence with CIE _y <0.06 and EQE >6% from naphthyl-linked phenanthroimidazole–carbazole hybrid fluorophores. Chemical Science, 2017, 8, 3599-3608.	3.7	145
49	Highly Efficient Deep-Blue Electroluminescence from a Charge-Transfer Emitter with Stable Donor Skeleton. ACS Applied Materials & Interfaces, 2017, 9, 7331-7338.	4.0	91
50	Transfer Hydrocyanation by Nickel(0)/Lewis Acid Cooperative Catalysis, Mechanism Investigation, and Computational Prediction of Shuttle Catalysts. Organometallics, 2017, 36, 2746-2754.	1.1	29
51	Phosphine-catalyzed remote α-C–H bond activation of alcohols or amines triggered by the radical trifluoromethylation of alkenes: reaction development and mechanistic insights. Organic Chemistry Frontiers, 2017, 4, 2139-2146.	2.3	29
52	A high performance deep-blue emitter with an anti-parallel dipole design. Dyes and Pigments, 2017, 146, 219-225.	2.0	17
53	Enantioselective Rhodium atalyzed Cycloisomerization of (<i>E</i>)â€1,6â€Enynes. Angewandte Chemie, 2016, 128, 6403-6407.	1.6	11
54	Steric and Electronic Effects of Bidentate Phosphine Ligands on Ruthenium(II)â€Catalyzed Hydrogenation of Carbon Dioxide. Chemistry - an Asian Journal, 2016, 11, 2528-2536.	1.7	14

#	Article	IF	CITATIONS
55	Removing shortcomings of linear molecules to develop high efficiencies deep-blue organic electroluminescent materials. Organic Electronics, 2016, 38, 323-329.	1.4	25
56	Enantioselective Rhodiumâ€Catalyzed Cycloisomerization of (<i>E</i>)â€1,6â€Enynes. Angewandte Chemie - International Edition, 2016, 55, 6295-6299.	7.2	32
57	Insight into the electronic effect of phosphine ligand on Rh catalyzed CO ₂ hydrogenation by investigating the reaction mechanism. Physical Chemistry Chemical Physics, 2016, 18, 4860-4870.	1.3	15
58	Ligand effect on the reactivity difference of Mo Tris(dithiolene) complexes towards Ethylene: A computational study. Journal of Organometallic Chemistry, 2016, 806, 60-67.	0.8	5
59	The locally twisted thiophene bridged phenanthroimidazole derivatives as dual-functional emitters for efficient non-doped electroluminescent devices. Organic Electronics, 2015, 18, 61-69.	1.4	21
60	Uptake of One and Two Molecules of 1,3-Butadiene by Platinum Bis(dithiolene): A Theoretical Study. Inorganic Chemistry, 2014, 53, 9692-9702.	1.9	16
61	Theoretical Study on the Reaction Mechanisms of CH3O– with O2(X3Σg–) and O2(a1Δg). Journal of Physical Chemistry A, 2012, 116, 11656-11667.	1.1	1
62	Theoretical Study on NHCâ€Ag(I)/Au(I) Catalyzed Mobius vs Wagnerâ€Meerwein Rearrangements of 2â€methylâ€Nâ€methoxyaniline. Asian Journal of Organic Chemistry, 0, , .	1.3	2
63	Rational Design of Axially Chiral Styreneâ€Based Organocatalysts and Their Application in Catalytic Asymmetric (2+4) Cyclizations. Angewandte Chemie, 0, , e202112226.	1.6	9
64	Theoretical investigation of the α-substitution effect on γ-C(sp ³)–H arylation of amines: structure–reactivity relationship (SRR) studies. Organic Chemistry Frontiers, 0, , .	2.3	0
65	Reaction mechanism study on reactions of phenylacetylenes with HSnEt ₃ promoted by B(C ₆ F ₅) ₃ with and without DABCO. Organic Chemistry Frontiers,	2.3	1