Oliver Jost

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2327437/publications.pdf Version: 2024-02-01

OLIVER LOST

#	Article	IF	CITATIONS
1	Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes. Physical Review Letters, 2003, 90, 057404.	2.9	321
2	Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy. Applied Physics Letters, 1999, 75, 2217-2219.	1.5	194
3	Solid–liquid–solid growth mechanism of single-wall carbon nanotubes. Carbon, 2002, 40, 113-118.	5.4	151
4	Chemical Optimization of Self-Assembled Carbon Nanotube Transistors. Nano Letters, 2005, 5, 451-455.	4.5	127
5	Novel Catalysts, Room Temperature, and the Importance of Oxygen for the Synthesis of Single-Walled Carbon Nanotubes. Nano Letters, 2005, 5, 1209-1215.	4.5	120
6	Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation. Chemical Physics Letters, 2002, 363, 567-572.	1.2	93
7	Catalyst Volume to Surface Area Constraints for Nucleating Carbon Nanotubes. Journal of Physical Chemistry B, 2007, 111, 8234-8241.	1.2	59
8	Rate-Limiting Processes in the Formation of Single-Wall Carbon Nanotubes:  Pointing the Way to the Nanotube Formation Mechanism. Journal of Physical Chemistry B, 2002, 106, 2875-2883.	1.2	54
9	Gas-dynamic consideration of the laser evaporation synthesis of single-wall carbon nanotubes. Applied Physics A: Materials Science and Processing, 1999, 69, S593-S596.	1.1	51
10	lsotope-Engineered Single-Wall Carbon Nanotubes; A Key Material for Magnetic Studies. Journal of Physical Chemistry C, 2007, 111, 4094-4098.	1.5	50
11	Third-order optical nonlinearities of carbon nanotubes in the femtosecond regime. Applied Physics Letters, 2004, 85, 3572-3574.	1.5	48
12	Impact of catalyst coarsening on the formation of single-wall carbon nanotubes. Chemical Physics Letters, 2001, 339, 297-304.	1.2	40
13	Role of the catalyst particle size in the synthesis of single-wall carbon nanotubes. Applied Surface Science, 2002, 197-198, 563-567.	3.1	40
14	Carbon nanotube transistor optimization by chemical control of the nanotube–metal interface. Applied Physics Letters, 2004, 84, 5106-5108.	1.5	36
15	Catalyst size dependencies for carbon nanotube synthesis. Physica Status Solidi (B): Basic Research, 2007, 244, 3911-3915.	0.7	35
16	Bandgap photoluminescence of semiconducting single-wall carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 1057-1060.	1.3	28
17	High-yield synthesis of single-walled carbon nanotubes with a pulsed arc-discharge technique. Physica Status Solidi (B): Basic Research, 2007, 244, 3907-3910.	0.7	28
18	Ambient effects on the electrical conductivity of carbon nanotubes. Carbon, 2015, 95, 347-353.	5.4	27

OLIVER JOST

#	Article	IF	CITATIONS
19	Single-Walled Carbon Nanotube Diameter. Journal of Nanoscience and Nanotechnology, 2004, 4, 433-440.	0.9	24
20	Novel catalysts for low temperature synthesis of single wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3101-3105.	0.7	20
21	Optical absorption spectroscopy and properties of single walled carbon nanotubes at high temperature. Synthetic Metals, 2014, 197, 182-187.	2.1	17
22	Improved sorting of carbon nanotubes according to electronic type by density gradient ultracentrifugation. Physica Status Solidi (B): Basic Research, 2010, 247, 2687-2690.	0.7	14
23	Ultrafast pump–probe measurements in single wall carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 380-383.	1.3	11
24	Selective laser treatment and laser patterning of metallic and semiconducting nanotubes in single walled carbon nanotube films. Diamond and Related Materials, 2014, 45, 70-75.	1.8	11
25	Purification and dispersion of carbon nanotubes by sidewall functionalization with single-stranded DNA. AIP Conference Proceedings, 2004, , .	0.3	10
26	Multi-component catalysts for the synthesis of SWCNT. Physica Status Solidi (B): Basic Research, 2009, 246, 2511-2513.	0.7	10
27	Properties of sputter and Sol-Gel deposited PZT thin films for sensor and actuator applications: Preparation, stress and space charge distribution, self poling. Ferroelectrics, 1999, 230, 109-114.	0.3	8
28	Full Polymer Dielectric Elastomeric Actuators (DEA) Functionalised with Carbon Nanotubes and High-K Ceramics. Micromachines, 2016, 7, 172.	1.4	8
29	Separation and Assembly of DNA-dispersed Carbon Nanotubes by Dielectrophoresis. AIP Conference Proceedings, 2005, , .	0.3	7
30	Photocreated carrier dynamics in isolated carbon nanotubes. Semiconductor Science and Technology, 2004, 19, S486-S488.	1.0	5
31	The spectroscopic investigation of the optical and electronic properties of SWCNT. AIP Conference Proceedings, 2000, , .	0.3	4
32	Synthesis of single wall carbon nanotubes with defined13C content. Physica Status Solidi (B): Basic Research, 2006, 243, 3050-3053.	0.7	4
33	High yield non destructive purification of single wall carbon nanotubes monitored by EPR measurements. , 0, , .		3
34	Optical absorption study of factors influencing the carbon nanotube nucleation process. AIP Conference Proceedings, 2001, , .	0.3	1
35	<title>Mechanism of carbon nanotube synthesis by laser ablation</title> . , 2001, , .		1
36	Laser Ablation Synthesis of Single-Wall Carbon Nanotubes: The SLS Model. , 2006, , 611-632.		1

OLIVER JOST

#	Article	IF	CITATIONS
37	The characterization of SWNT containing soot by optical spectroscopy. , 1999, , .		0
38	Variation of the Growth Time of Carbon Nanotubes in Different Gases. AIP Conference Proceedings, 2002, , .	0.3	0
39	Limited Number of Possible Mean Diameters in the Evaporation Synthesis of Single-Walled Carbon Nanotubes. AIP Conference Proceedings, 2004, , .	0.3	0
40	Metal Oxides and Low Temperature SWCNT Synthesis via Laser Evaporation. AIP Conference Proceedings, 2005, , .	0.3	0
41	Nucleation and growth of single-walled carbon nanotubes in the laser ablation products. , 2006, , .		0