
Nere Gil-Negrete

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2327404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A survey on the modelling of air springs – secondary suspension in railway vehicles. Vehicle System Dynamics, 2022, 60, 835-864.	2.2	11
2	Effect of lubrication on the mechanical behavior of magnetorheological elastomers in compression mode. Polymer Testing, 2022, 111, 107617.	2.3	6
3	Multidisciplinary analysis of a 750ÂkW PMSM for marine propulsion including shock loading response. IET Electric Power Applications, 2020, 14, 1974-1983.	1.1	1
4	Implementation of Timoshenko element local deflection for vertical track modelling. Vehicle System Dynamics, 2019, 57, 1421-1444.	2.2	7
5	Modal approach to obtain the coupling loss factors between structural systems and the surrounding fluid. Applied Acoustics, 2018, 133, 144-156.	1.7	0
6	Distributed support modelling for vertical track dynamic analysis. Vehicle System Dynamics, 2018, 56, 529-552.	2.2	13
7	Influence of Sandwich-Type Constrained Layer Damper Design Parameters on Damping Strength. Shock and Vibration, 2016, 2016, 1-14.	0.3	1
8	An experimental comparison between existing damping solutions for railway wheels. Noise Control Engineering Journal, 2015, 63, 448-459.	0.2	2
9	Constrained Layer Damper Modelling and Performance Evaluation for Eliminating Squeal Noise in Trams. Shock and Vibration, 2014, 2014, 1-11.	0.3	8
10	Theoretical prediction of the damping of a railway wheel with sandwich-type dampers. Journal of Sound and Vibration, 2014, 333, 4897-4911.	2.1	13
11	Indirect energy flow measurement in magneto-sensitive vibration isolator systems. Applied Acoustics, 2013, 74, 575-584.	1.7	7
12	Modelling energy flow through magneto-sensitive vibration isolators. International Journal of Engineering Science, 2013, 65, 22-39.	2.7	18
13	Development of a rubber component model suitable for being implemented in railway dynamic simulation programs. Journal of Sound and Vibration, 2013, 332, 3032-3048.	2.1	21
14	Practical Computational Aeroacoustics for Complex Confined Scattering Geometries in Low Mach Number Flows. Acta Acustica United With Acustica, 2013, 99, 130-138.	0.8	1
15	Design and applications Characterization of elastomers under simultaneous tension and torsion for application to engine mounts. , 2013, , 603-608.		0
16	Numerical vibro-acoustic analysis of railway wheels with and without damping solutions. Noise Control Engineering Journal, 2012, 60, 458-472.	0.2	3
17	Influence of carbon black and plasticisers on dynamic properties of isotropic magnetosensitive natural rubber. Plastics, Rubber and Composites, 2012, 41, 310-317.	0.9	17
18	Direct energy flow measurement in magneto-sensitive vibration isolator systems. Journal of Sound and Vibration, 2012, 331, 1994-2006.	2.1	22

NERE GIL-NEGRETE

#	Article	IF	CITATIONS
19	Practical Computational Aeroacoustics for Compact Surfaces in Low Mach Number Flows. Acta Acustica United With Acustica, 2011, 97, 14-23.	0.8	4
20	A Nonlinear Rubber Material Model Combining Fractional Order Viscoelasticity and Amplitude Dependent Effects. Journal of Applied Mechanics, Transactions ASME, 2009, 76, .	1.1	39
21	A computer experiment application to the design and optimization of a capacitive accelerometer. Applied Stochastic Models in Business and Industry, 2009, 25, 151-162.	0.9	4
22	Viscoelastic models for rubber mounts: influence on the dynamic behaviour of an elastomeric isolated system. International Journal of Vehicle Design, 2009, 49, 303.	0.1	15
23	Torsion stiffness of a rubber bushing: A simple engineering design formula including the amplitude dependence. Journal of Strain Analysis for Engineering Design, 2007, 42, 13-21.	1.0	24
24	Frequency and amplitude dependence of the axial and radial stiffness of carbon-black filled rubber bushings. Polymer Testing, 2007, 26, 629-638.	2.3	38
25	A simplified methodology to predict the dynamic stiffness of carbon-black filled rubber isolators using a finite element code. Journal of Sound and Vibration, 2006, 296, 757-776.	2.1	64
26	Effect of liquid high positive friction (HPF) modifier on wheel-rail contact and rail corrugation. Tribology International, 2005, 38, 769-774.	3.0	40
27	Predicting the Dynamic Behaviour of Hydrobushings. Shock and Vibration, 2005, 12, 91-107.	0.3	19