Pengfei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2326885/publications.pdf

Version: 2024-02-01

101 papers

3,552 citations

34 h-index 56 g-index

106 all docs

106 docs citations

106 times ranked 2867 citing authors

#	Article	IF	CITATIONS
1	Recent advances in $C\hat{a}\in S$ bond formation via $C\hat{a}\in H$ bond functionalization and decarboxylation. Chemical Society Reviews, 2015, 44, 291-314.	38.1	702
2	A highly active and easily recoverable chitosan@copper catalyst for the C–S coupling and its application in the synthesis of zolimidine. Green Chemistry, 2014, 16, 3007-3012.	9.0	142
3	Remote Câ^'H Activation of Quinolines through Copperâ€Catalyzed Radical Crossâ€Coupling. Chemistry - an Asian Journal, 2016, 11, 882-892.	3.3	130
4	Transition-Metal and Solvent-Free Oxidative C–H Fluoroalkoxylation of Quinoxalinones with Fluoroalkyl Alcohols. Organic Letters, 2019, 21, 4698-4702.	4.6	110
5	Copper(<scp>ii</scp>)-catalyzed C5 and C7 halogenation of quinolines using sodium halides under mild conditions. Organic and Biomolecular Chemistry, 2016, 14, 3016-3021.	2.8	103
6	Nickel(II)-Catalyzed Site-Selective C–H Bond Trifluoromethylation of Arylamine in Water through a Coordinating Activation Strategy. Organic Letters, 2017, 19, 5661-5664.	4.6	87
7	Hypervalent Iodine(III)â€Promoted Rapid Cascade Reaction of Quinoxalinones with Unactivated Alkenes and TMSN ₃ . Advanced Synthesis and Catalysis, 2020, 362, 230-241.	4.3	78
8	Photocatalyst-, metal- and additive-free, direct Câ€"H arylation of quinoxalin-2(1 <i>H</i>)-ones with aryl acyl peroxides induced by visible light. Organic Chemistry Frontiers, 2020, 7, 4031-4042.	4.5	76
9	A concise, efficient synthesis of sugar-based benzothiazoles through chemoselective intramolecular C–S coupling. Chemical Science, 2012, 3, 2388.	7.4	67
10	Synthesis of (<i>E</i>)-Quinoxalinone Oximes through a Multicomponent Reaction under Mild Conditions. Organic Letters, 2021, 23, 195-201.	4.6	63
11	A novel <scp>d</scp> -glucosamine-derived pyridyl-triazole@palladium catalyst for solvent-free Mizoroki–Heck reactions and its application in the synthesis of Axitinib. Green Chemistry, 2015, 17, 225-230.	9.0	62
12	Heterogeneous Chitosan@Copper(II)â€Catalyzed Remote Trifluoromethylation of Aminoquinolines with the Langlois Reagent by Radical Crossâ€Coupling. ChemCatChem, 2016, 8, 3560-3564.	3.7	60
13	Recent Advances in the Catalytic Synthesis of 4-Quinolones. CheM, 2019, 5, 1059-1107.	11.7	56
14	The visible-light-triggered regioselective alkylation of quinoxalin-2(1 <i>H</i>)-ones <i>via</i> decarboxylation coupling. Organic and Biomolecular Chemistry, 2019, 17, 10201-10208.	2.8	55
15	Copper(<scp>ii</scp>)-catalyzed remote sulfonylation of aminoquinolines with sodium sulfinates <i>via</i> radical coupling. RSC Advances, 2016, 6, 37173-37179.	3.6	53
16	Transition-metal-free direct perfluoroalkylation of quinoline amides at C5 position through radical cross-coupling under mild conditions. Organic Chemistry Frontiers, 2017, 4, 1116-1120.	4.5	52
17	BRD4 promotes tumor growth and epithelial-mesenchymal transition in hepatocellular carcinoma. International Journal of Immunopathology and Pharmacology, 2015, 28, 36-44.	2.1	49
18	A combination of heterogeneous catalysis and photocatalysis for the olefination of quinoxalin- $2(1H)$ -ones with ketones in water: a green and efficient route to (Z) -enaminones. Green Chemistry, 2021, 23, 2123-2129.	9.0	48

#	Article	IF	CITATIONS
19	Catalystâ€Controlled Selectivity in Câ°'S Bond Formation: Highly Efficient Synthesis of C2―and C3â€Sulfonylindoles. ChemCatChem, 2016, 8, 304-307.	3.7	46
20	Copper-catalyzed rapid C–H nitration of 8-aminoquinolines by using sodium nitrite as the nitro source under mild conditions. RSC Advances, 2016, 6, 89979-89983.	3.6	46
21	Copper(II)â€Catalyzed Direct Azidation of <i>N</i> â€Acylated 8â€Aminoquinolines by Remote Câ^'H Activation. ChemCatChem, 2016, 8, 3570-3574.	3.7	45
22	Novel glycosyl pyridyl-triazole@palladium nanoparticles: efficient and recoverable catalysts for C–C cross-coupling reactions. Catalysis Science and Technology, 2015, 5, 2065-2071.	4.1	44
23	Selective remote esterification of 8-aminoquinoline amides via copper(ii)-catalyzed C(sp2)–O cross-coupling reaction. Organic and Biomolecular Chemistry, 2017, 15, 531-535.	2.8	44
24	Functionalized quinoxalinones as privileged structures with broad-ranging pharmacological activities. European Journal of Medicinal Chemistry, 2022, 229, 114085.	5.5	44
25	Copper(II)â€Catalyzed Selective <i>Para</i> Amination of Arylamine with Pyrazole by Câ^'H Functionalization. ChemCatChem, 2018, 10, 3675-3679.	3.7	42
26	<scp>d</scp> -Glucosamine as a green ligand for copper catalyzed synthesis of aryl sulfones from aryl halides and sodium sulfinates. RSC Advances, 2014, 4, 26295-26300.	3.6	41
27	Multicomponent Bifunctionalization of Methyl Ketones Enabled by Heterogeneous Catalysis and Solar Photocatalysis in Water. ACS Sustainable Chemistry and Engineering, 2021, 9, 13663-13671.	6.7	41
28	Catalystâ€Controlled Selectivity in the Synthesis of C2―and C3â€Sulfonate Esters from Quinoline <i>N</i> â€Oxides and Aryl Sulfonyl Chlorides. ChemCatChem, 2016, 8, 2604-2608.	3.7	40
29	Photoinduced Rapid Multicomponent Cascade Reaction of Aryldiazonium Salts with Unactivated Alkenes and TMSN ₃ . Organic Letters, 2021, 23, 1204-1208.	4.6	39
30	A highly efficient synthesis of N-glycosyl-1,2,3-triazoles using a recyclable cellulose-copper(0) catalyst in water. Catalysis Communications, 2016, 79, 11-16.	3.3	38
31	Coordinating Activation Strategyâ€Induced Selective Câ^'H Trifluoromethylation of Anilines. ChemCatChem, 2018, 10, 965-970.	3.7	38
32	Selective oxidation of alkenes to carbonyls under mild conditions. Green Chemistry, 2021, 23, 5549-5555.	9.0	38
33	TPGS–Galactose-Modified Polydopamine Co-delivery Nanoparticles of Nitric Oxide Donor and Doxorubicin for Targeted Chemo–Photothermal Therapy against Drug-Resistant Hepatocellular Carcinoma. ACS Applied Materials & Interfaces, 2021, 13, 35518-35532.	8.0	38
34	A highly efficient way to capture CX2 (O, S) mildly in reusable RelLs at atmospheric pressure. Green Chemistry, 2014, 16, 3142.	9.0	36
35	Efficient synthesis of the key chiral alcohol intermediate of Crizotinib using dualâ€enzyme@CaHPO ₄ hybrid nanoflowers assembled by mimetic biomineralization. Journal of Chemical Technology and Biotechnology, 2019, 94, 236-243.	3.2	35
36	Palladium-catalyzed direct ortho-sulfonylation of azobenzenes with arylsulfonyl chlorides via C–H activation. RSC Advances, 2015, 5, 52588-52594.	3.6	34

#	Article	IF	CITATIONS
37	Palladium atalyzed Thioetherification of Quinolone Derivatives via Decarboxylative Câ°'S Crossâ€Couplings. Chemistry - an Asian Journal, 2016, 11, 360-366.	3.3	32
38	Photo-Induced Cross-Dehydrogenative Alkylation of Heteroarenes with Alkanes under Aerobic Conditions. Journal of Organic Chemistry, 2021, 86, 17816-17832.	3.2	32
39	lodobenzene-catalyzed synthesis of aryl sulfonate esters from aminoquinolines via remote radical C–O cross-coupling. RSC Advances, 2017, 7, 49436-49439.	3.6	31
40	Rapid alkenylation of quinoxalin-2(1H)-ones enabled by the sequential Mannich-type reaction and solar photocatalysis. Chinese Chemical Letters, 2021, 32, 3627-3631.	9.0	31
41	2D Single Crystal WSe ₂ and MoSe ₂ Nanomeshes with Quantifiable High Exposure of Layer Edges from 3D Mesoporous Silica Template. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17670-17677.	8.0	28
42	Regioselective and Direct Azidation of Anilines via Cu(II)-Catalyzed C–H Functionalization in Water. Journal of Organic Chemistry, 2017, 82, 11212-11217.	3.2	27
43	Synthesis of Benzimidazo[1,2- <i>c</i>]quinazolines via Metal-Free Intramolecular C–H Amination Reaction. Industrial & Damp; Engineering Chemistry Research, 2016, 55, 3177-3181.	3.7	26
44	Introduction of the \hat{l}_{\pm} -ketoamide structure: en route to develop hydrogen peroxide responsive prodrugs. Chemical Science, 2019, 10, 7156-7162.	7.4	26
45	From Phenylhydrazone to 1 <i>H</i> àâ€1,2,4â€Triazoles via Nitrification, Reduction and Cyclization. Advanced Synthesis and Catalysis, 2020, 362, 1657-1662.	4.3	26
46	Convenient one-step purification and immobilization of lipase using a genetically encoded aldehyde tag. Biochemical Engineering Journal, 2013, 73, 86-92.	3.6	25
47	A Synthetic Protocol for the Construction of Chromanâ€Spiroquinazolin(thi)one Framework via a Metalâ€Free, Threeâ€Component, Domino, Double Annulations. Advanced Synthesis and Catalysis, 2022, 364, 855-864.	4.3	25
48	Synthesis, characterization, and cytotoxicity of some novel glycosyl thiazol-2-imines as antitumoral agents. Carbohydrate Research, 2010, 345, 437-441.	2.3	21
49	An efficient d-glucosamine-based copper catalyst for C–X couplings and its application in the synthesis of nilotinib intermediate. RSC Advances, 2015, 5, 1522-1528.	3.6	21
50	Catalystâ€Triggered Highly Selective Câ^'S and Câ^'Se Bond Formation by Câ^'H Activation. ChemCatChem, 2016, 8, 2916-2919.	3.7	21
51	A highly selective ratiometric fluorescent probe for the cascade detection of Zn ²⁺ and H ₂ PO ₄ ^{â°'} and its application in living cell imaging. RSC Advances, 2017, 7, 40615-40620.	3.6	21
52	Immobilization of cholesterol oxidase on magnetic fluorescent core-shell-structured nanoparticles. Materials Science and Engineering C, 2015, 57, 31-37.	7.3	20
53	Dual-cycle immobilization to reuse both enzyme and support by reblossoming enzyme–inorganic hybrid nanoflowers. RSC Advances, 2018, 8, 16088-16094.	3.6	20
54	Copperâ€Catalyzed Regioselective Nitration and Azidation of 1â€Naphthylamine Derivatives via Remote C–H Activation. European Journal of Organic Chemistry, 2018, 2018, 4571-4576.	2.4	19

#	Article	IF	CITATIONS
55	Platinum(<scp>ii</scp>)-catalyzed selective <i>para</i> Câ€"H alkoxylation of arylamines through a coordinating activation strategy. Organic and Biomolecular Chemistry, 2019, 17, 490-497.	2.8	19
56	Oxidative Sulfonylation of Hydrazones Enabled by Synergistic Copper/Silver Catalysis. Journal of Organic Chemistry, 2021, 86, 3706-3720.	3.2	19
57	Synthesis of C-glycosyl triazolyl quinoline-based fluorescent sensors for the detection of mercury ions. Carbohydrate Research, 2016, 433, 41-46.	2.3	17
58	Novel synthesis of carbohydrate-derived organocatalysts and their application in asymmetric aldol reactions. Catalysis Communications, 2013, 41, 106-109.	3.3	16
59	Rapidly and Precisely Cross-Linked Enzymes Using Bio-Orthogonal Chemistry from Cell Lysate for the Synthesis of (<i>S</i>)-1-(2,6-Dichloro-3-fluorophenyl) Ethanol. ACS Sustainable Chemistry and Engineering, 2020, 8, 6466-6478.	6.7	16
60	Metal-based 2,3-indolinedione derivatives as proteasome inhibitors and inducers of apoptosis in human cancer cells. International Journal of Molecular Medicine, 2014, 34, 870-879.	4.0	15
61	Remote radical halogenation of aminoquinolines with aqueous hydrogen halide (HX) and oxone. Tetrahedron Letters, 2018, 59, 2243-2247.	1.4	14
62	Selective Mono- and Diamination of Ketones in a Combined Copper–Organocatalyst System. Organic Letters, 2022, 24, 3614-3619.	4.6	14
63	Carbohydrate Metabolism and Gene Regulation during Anther Development Disturbed by Chemical Hybridizing Agent in Wheat. Crop Science, 2015, 55, 868-876.	1.8	12
64	Microspore Abortion and Abnormal Tapetal Degeneration in a Maleâ€sterile Wheat Line Induced by the Chemical Hybridizing Agent SQâ€1. Crop Science, 2015, 55, 1117-1128.	1.8	12
65	Hypervalent iodine(iii)-promoted rapid cascade reaction for the synthesis of unsymmetric azo compounds. Organic and Biomolecular Chemistry, 2021, 19, 3119-3123.	2.8	11
66	Synthesis and Biological Evaluation of Novel Carbohydrateâ€Derived Derivatives of Erlotinib. Drug Development Research, 2016, 77, 319-325.	2.9	10
67	Palladium-Catalyzed Direct Ortho C–O bond construction of Azobenzenes with Iodobenzene diacetate via C–H Activation. Catalysis Letters, 2017, 147, 400-406.	2.6	10
68	Design and synthesis of a new fluorescent probe for cascade detection of Zn ²⁺ and H ₂ PO ₄ ^{â°} in water and targeted imaging of living cells. Luminescence, 2019, 34, 407-414.	2.9	10
69	Rapid degradation of norfloxacin by VUV/Fe2+/H2O2 over a wide initial pH: Process parameters, synergistic mechanism, and influencing factors. Journal of Hazardous Materials, 2021, 416, 125893.	12.4	10
70	Photo-induced oxidative cleavage of C-C double bonds of olefins in water. Tetrahedron Letters, 2021, 80, 153321.	1.4	10
71	Synthesis and anti-tumor activity of glycosyl oxadiazoles derivatives. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5318-5320.	2.2	9
72	Microwave-assisted rapid synthesis of sugar-based pyrazole derivatives with anticancer activity in water. RSC Advances, 2016, 6, 66803-66806.	3.6	9

#	Article	IF	CITATIONS
73	Iron-Catalyzed C5 Halogenation of 8-Amidoquinolines Using Sodium Halides at Room Temperature. Catalysis Letters, 2017, 147, 1574-1580.	2.6	9
74	Novel Magnetically-Recyclable, Nitrogen-Doped Fe3O4@Pd NPs for Suzuki–Miyaura Coupling and Their Application in the Synthesis of Crizotinib. Catalysts, 2018, 8, 443.	3.5	9
75	Synthesis of Some Novel Glucosyl Triazoles from 2,3,4,6-Tetra-O-pivaloyl-D-glucopyranosylÂAzide. Journal of Carbohydrate Chemistry, 2010, 29, 155-163.	1.1	8
76	Palladium-Catalyzed Decarboxylative Csp2–Csp2 Cross-Coupling Reactions: An Efficient Route for Synthesis of Azaisoflavone Derivatives. Catalysis Letters, 2015, 145, 1634-1642.	2.6	8
77	Iron(III)-Mediated Rapid Radical-Type Three-Component Deuteration of Quinoxalinones With Olefins and NaBD4. Frontiers in Chemistry, 2020, 8, 606.	3.6	8
78	Visible-light-induced C–H sulfenylation of quinoxalin-2(1H)-ones with disulfides by sustainable cerium catalysis. Green Synthesis and Catalysis, 2023, 4, 226-230.	6.8	8
79	Chemoenzymatic selective formation of C–N bonds in a benzimidazole heterocycle. RSC Advances, 2013, 3, 24959.	3.6	7
80	Efficient synthesis of vitamin A palmitate in nonaqueous medium using self-assembled lipase TLL@apatite hybrid nanoflowers by mimetic biomineralization. Green Chemistry Letters and Reviews, 2018, 11, 476-483.	4.7	7
81	Visible-light-induced decarboxylative alkylation of quinoxalin-2(1H)-ones with phenyliodine(III) dicarboxylates by cerium photocatalysis. Molecular Catalysis, 2022, 519, 112145.	2.0	7
82	Photoinitiated multicomponent cascade reaction of Nheteroarenes with unactivated alkenes and trimethylsilyl azide. Molecular Catalysis, 2022, 524, 112330.	2.0	7
83	Programing a cyanide-free transformation of aldehydes to nitriles and one-pot synthesis of amides through tandem chemo-enzymatic cascades. RSC Advances, 2022, 12, 17873-17881.	3.6	7
84	Oneâ€pot synthesis and antimicrobial activity of novel quinolone heterocyclic derivatives. Journal of Heterocyclic Chemistry, 2010, 47, 1411-1414.	2.6	6
85	The simple synthesis and antimicrobial activity of novel fluoroquinolone derivatives from natural amino acid salts. Medicinal Chemistry Research, 2012, 21, 53-59.	2.4	6
86	Denoising Marine Controlled Source Electromagnetic Data Based on Dictionary Learning. Minerals (Basel, Switzerland), 2022, 12, 682.	2.0	6
87	Visible light-driven oxidative coupling of dibenzylamine and substituted anilines with a 2D WSe ₂ nanomesh material. Nanoscale, 2020, 12, 21869-21878.	5.6	5
88	Image Feature Based Machine Learning Approach for Road Terrain Classification. , 2018, , .		4
89	Copper-catalyzed selective oxidation of hydrazones through C(sp3)-H Functionalization. Organic and Biomolecular Chemistry, 2021, 19, 8917-8923.	2.8	4
90	Controlled chemical assembly of enzymes in cell lysate enabled by genetic-encoded nonstandard amino acids. Materials Chemistry Frontiers, 2022, 6, 182-193.	5.9	4

#	Article	IF	CITATIONS
91	A HCl-Mediated, Metal- and Oxidant-Free Photocatalytic Strategy for C3 Arylation of Quinoxalin(on)es with Arylhydrazine. Catalysts, 2022, 12, 633.	3.5	4
92	STEREOSELECTIVE SYNTHESIS OF α-AMINO ACIDS FROM O-PIVALOYL-D-GLUCOPYRANOSYLALDIMINE. Organic Preparations and Procedures International, 2005, 37, 65-73.	1.3	3
93	α-Functionalization of ketones promoted by sunlight and heterogeneous catalysis in the aqueous phase. Organic and Biomolecular Chemistry, 2022, 20, 790-795.	2.8	3
94	Implementation of the Student-Centered Team-Based Learning Teaching Method in a Medicinal Chemistry Curriculum. Journal of Chemical Education, 2022, 99, 1855-1862.	2.3	3
95	Synthesis, Crystal Structure, and Theoretical Calculation of the Cd(II) Complex with 2-Aminobenzothiazole. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 603-610.	0.6	2
96	Improving Vehicle Detection in Point Cloud Data with Novel Features., 2018,,.		2
97	Practical chemoselective aromatic substitution: the synthesis of <i>N</i> -(4-halo-2-nitrophenyl)benzenesulfonamide through the efficient nitration and halogenation of <i>N</i> -phenylbenzenesulfonamide. Organic and Biomolecular Chemistry, 2022, 20, 5444-5451.	2.8	2
98	Synthesis, characterization, and biological evaluation of new N-glycosides derived from O-pivaloylated β-d-glucopyranosylamine. Research on Chemical Intermediates, 2012, 38, 863-870.	2.7	1
99	Catalyst-Controlled Selectivity in Câ^'S Bond Formation: Highly Efficient Synthesis of C2- and C3-Sulfonylindoles. ChemCatChem, 2016, 8, 280-280.	3.7	1
100	Synthesis of quinazoin-4-ones through an acid ion exchange resin mediated cascade reaction. Organic and Biomolecular Chemistry, 2020, 18, 4406-4414.	2.8	1
101	Constructing a triangular metallacycle with salen–Al and its application to a catalytic cyanosilylation reaction. Chemical Communications, 2021, 57, 10399-10402.	4.1	1