
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2325733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 165.	0.8	436
2	Chemical composition and complex refractive index of Saharan Mineral Dust at Izaña, Tenerife (Spain) derived by electron microscopy. Atmospheric Environment, 2007, 41, 8058-8074.	1.9	376
3	Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 32.	0.8	321
4	Mineral dust aerosols over the Sahara: Meteorological controls on emission and transport and implications for modeling. Reviews of Geophysics, 2012, 50, .	9.0	269
5	Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates. Meteorology and Atmospheric Physics, 2003, 83, 67-88.	0.9	228
6	Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 144.	0.8	196
7	A Lagrangian Climatology of Tropical Moisture Exports to the Northern Hemispheric Extratropics. Journal of Climate, 2010, 23, 987-1003.	1.2	186
8	The role of moist convection in the West African monsoon system: Insights from continentalâ€scale convectionâ€permitting simulations. Geophysical Research Letters, 2013, 40, 1843-1849.	1.5	177
9	Largeâ€eddy simulations over Germany using ICON: a comprehensive evaluation. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 69-100.	1.0	175
10	The "Year―of Tropical Convection (May 2008–April 2010): Climate Variability and Weather Highlights. Bulletin of the American Meteorological Society, 2012, 93, 1189-1218.	1.7	164
11	Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment. Journal of Geophysical Research, 2008, 113, .	3.3	156
12	Saharan dust absorption and refractive index from aircraft-based observations during SAMUM 2006. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 118.	0.8	156
13	Dust emissions over the Sahel associated with the West African monsoon intertropical discontinuity region: A representative caseâ€study. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 621-634.	1.0	152
14	The mysterious long-range transport of giant mineral dust particles. Science Advances, 2018, 4, eaau2768.	4.7	147
15	The role of deep convection and nocturnal lowâ€level jets for dust emission in summertime West Africa: Estimates from convectionâ€permitting simulations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4385-4400.	1.2	139
16	The importance of the representation of deep convection for modeled dust-generating winds over West Africa during summer. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	135
17	Climatology of nocturnal lowâ€level jets over North Africa and implications for modeling mineral dust emission. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6100-6121.	1.2	115
18	Dust mobilization due to density currents in the Atlas region: Observations from the Saharan Mineral Dust Experiment 2006 field campaign. Journal of Geophysical Research, 2007, 112, .	3.3	113

#	Article	IF	CITATIONS
19	The possible role of local air pollution in climate change in West Africa. Nature Climate Change, 2015, 5, 815-822.	8.1	109
20	Global Climatologies of Eulerian and Lagrangian Flow Features based on ERA-Interim. Bulletin of the American Meteorological Society, 2017, 98, 1739-1748.	1.7	108
21	Changing cyclones and surface wind speeds over the North Atlantic and Europe in a transient GHG experiment. Climate Research, 2000, 15, 109-122.	0.4	107
22	Tropical plumes and extreme precipitation in subtropical and tropical West Africa. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 2337-2365.	1.0	100
23	The central west Saharan dust hot spot and its relation to African easterly waves and extratropical disturbances. Journal of Geophysical Research, 2010, 115, .	3.3	100
24	Decadal changes in the link between El Niño and springtime North Atlantic oscillation and European-North African rainfall. International Journal of Climatology, 2003, 23, 1293-1311.	1.5	97
25	Regional Model Simulations of the Bodélé Low-Level Jet of Northern Chad during the Bodélé Dust Experiment (BoDEx 2005). Journal of Climate, 2008, 21, 995-1012.	1.2	95
26	The DACCIWA Project: Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa. Bulletin of the American Meteorological Society, 2015, 96, 1451-1460.	1.7	84
27	A critical evaluation of the ability of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) thermal infrared redâ€greenâ€blue rendering to identify dust events: Theoretical analysis. Journal of Geophysical Research, 2012, 117, .	3.3	81
28	Are vegetationâ€related roughness changes the cause of the recent decrease in dust emission from the Sahel?. Geophysical Research Letters, 2013, 40, 1868-1872.	1.5	80
29	Dust mobilization and transport in the northern Sahara during SAMUM 2006 – a meteorological overview. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 12.	0.8	79
30	Climate of the Mediterranean. , 2012, , 301-346.		78
31	A Global Climatology of Tropical Moisture Exports. Journal of Climate, 2013, 26, 3031-3045.	1.2	78
32	Synoptic and dynamic aspects of an extreme springtime Saharan dust outbreak. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 1153-1177.	1.0	76
33	Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones. Geophysical Research Letters, 2012, 39, .	1.5	73
34	Dust emissions in the West African heat trough the role of the diurnal cycle and of extratropical disturbances. Meteorologische Zeitschrift, 2008, 17, 553-563.	0.5	71
35	Tropical–extratropical interactions related to upper-level troughs at low latitudes. Dynamics of Atmospheres and Oceans, 2007, 43, 36-62.	0.7	68
36	Vertical profiling of convective dust plumes in southern Morocco during SAMUM. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 340.	0.8	68

#	Article	IF	CITATIONS
37	The West African Monsoon Onset: A Concise Comparison of Definitions. Journal of Climate, 2015, 28, 8673-8694.	1.2	67
38	Status and future of numerical atmospheric aerosol prediction with a focus on data requirements. Atmospheric Chemistry and Physics, 2018, 18, 10615-10643.	1.9	64
39	Ultra-low clouds over the southern West African monsoon region. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	63
40	A meteorological and chemical overview of the DACCIWA field campaign in West Africa in June–July 2016. Atmospheric Chemistry and Physics, 2017, 17, 10893-10918.	1.9	62
41	The Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa Field Campaign: Overview and Research Highlights. Bulletin of the American Meteorological Society, 2018, 99, 83-104.	1.7	62
42	Skill of Global Raw and Postprocessed Ensemble Predictions of Rainfall over Northern Tropical Africa. Weather and Forecasting, 2018, 33, 369-388.	0.5	62
43	Impact of Dust Radiative Forcing upon Climate. , 2014, , 327-357.		61
44	Three Late Summer/Early Autumn Cases of Tropical–Extratropical Interactions Causing Precipitation in Northwest Africa. Monthly Weather Review, 2003, 131, 116-135.	0.5	60
45	Links between African easterly waves, midlatitude circulation and intraseasonal pulsations of the West African heat low. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 141-158.	1.0	59
46	A Pacific Moisture Conveyor Belt and Its Relationship to a Significant Precipitation Event in the Semiarid Southwestern United States. Weather and Forecasting, 2007, 22, 125-144.	0.5	58
47	Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 239.	0.8	57
48	How important are atmospheric depressions and mobile cyclones for emitting mineral dust aerosol in North Africa?. Atmospheric Chemistry and Physics, 2014, 14, 8983-9000.	1.9	57
49	Rainfall types over southern West Africa: Objective identification, climatology and synoptic environment. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 1628-1648.	1.0	57
50	Why Do Global Climate Models Struggle to Represent Low-Level Clouds in the West African Summer Monsoon?. Journal of Climate, 2017, 30, 1665-1687.	1.2	56
51	A climatology of dust emission events from northern Africa using long-term surface observations. Atmospheric Chemistry and Physics, 2014, 14, 8579-8597.	1.9	55
52	Dry-Season Precipitation in Tropical West Africa and Its Relation to Forcing from the Extratropics. Monthly Weather Review, 2008, 136, 3579-3596.	0.5	54
53	The impact of a mesoscale convective system cold pool on the northward propagation of the intertropical discontinuity over West Africa. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 139-159.	1.0	54
54	The vertical cloud structure of the West African monsoon: A 4 year climatology using CloudSat and CALIPSO. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	51

#	Article	IF	CITATIONS
55	Highâ€resolution simulations of convective cold pools over the northwestern Sahara. Journal of Geophysical Research, 2009, 114, .	3.3	50
56	Analysis of winter dust activity off the coast of West Africa using a new 24-year over-water advanced very high resolution radiometer satellite dust climatology. Journal of Geophysical Research, 2006, 111, .	3.3	49
57	Mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM 2006: Shapeâ€independent particle properties. Journal of Geophysical Research, 2010, 115, .	3.3	49
58	Quantifying global dust devil occurrence from meteorological analyses. Geophysical Research Letters, 2015, 42, 1275-1282.	1.5	49
59	Regional Saharan dust modelling during the SAMUM 2006 campaign. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 307.	0.8	48
60	An overview of the diurnal cycle of the atmospheric boundary layer during the West African monsoon season: results from the 2016 observational campaign. Atmospheric Chemistry and Physics, 2018, 18, 2913-2928.	1.9	48
61	EARLINET observations of the 14–22-May long-range dust transport event during SAMUM 2006: validation of results from dust transport modelling. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 325.	0.8	47
62	Regional modelling of Saharan dust and biomass-burning smoke: Part 1: Model description and evaluation. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 781.	0.8	47
63	Extreme Precipitation in the West African Cities of Dakar and Ouagadougou: Atmospheric Dynamics and Implications for Flood Risk Assessments. Journal of Hydrometeorology, 2017, 18, 2937-2957.	0.7	46
64	Formation and Maintenance of Nocturnal Low-Level Stratus over the Southern West African Monsoon Region during AMMA 2006. Journals of the Atmospheric Sciences, 2013, 70, 2337-2355.	0.6	45
65	Revisiting interannual to decadal teleconnections influencing seasonal rainfall in the Greater Horn of Africa during the 20th century. International Journal of Climatology, 2019, 39, 2765-2785.	1.5	43
66	Tropical–Extratropical Interactions Causing Precipitation in Northwest Africa: Statistical Analysis and Seasonal Variations. Monthly Weather Review, 2003, 131, 3069-3076.	0.5	42
67	A Parameterization of Convective Dust Storms for Models with Mass-Flux Convection Schemes. Journals of the Atmospheric Sciences, 2015, 72, 2545-2561.	0.6	42
68	Tropical–Extratropical Interactions Associated with an Atlantic Tropical Plume and Subtropical Jet Streak. Monthly Weather Review, 2005, 133, 2759-2776.	0.5	41
69	Northward bursts of the West African monsoon leading to rainfall over the Hoggar Massif, Algeria. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 174-189.	1.0	41
70	Climatology of convective density currents in the southern foothills of the Atlas Mountains. Journal of Geophysical Research, 2010, 115, .	3.3	39
71	Simulations of convectivelyâ€driven density currents in the Atlas region using a regional model: Impacts on dust emission and sensitivity to horizontal resolution and convection schemes. Journal of Geophysical Research, 2009, 114, .	3.3	38
72	A Process-Based Validation of GPM IMERG and Its Sources Using a Mesoscale Rain Gauge Network in the West African Forest Zone. Journal of Hydrometeorology, 2020, 21, 729-749.	0.7	38

#	Article	IF	CITATIONS
73	The formation of a large summertime Saharan dust plume: Convective and synoptic-scale analysis. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1766-1785.	1.2	37
74	The importance of rare, highâ€wind events for dust uplift in northern Africa. Geophysical Research Letters, 2015, 42, 8208-8215.	1.5	37
75	Haboobs: convectively generated dust storms in West Africa. Weather, 2012, 67, 311-316.	0.6	36
76	Numerical simulations of aerosol radiative effects and their impact on clouds and atmospheric dynamics over southern West Africa. Atmospheric Chemistry and Physics, 2018, 18, 9767-9788.	1.9	36
77	Introduction to the AMMA Special Issue on â€ [~] Advances in understanding atmospheric processes over West Africa through the AMMA field campaign'. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 2-7.	1.0	35
78	Dust Devil Sediment Transport: From Lab to Field to Global Impact. Space Science Reviews, 2016, 203, 377-426.	3.7	35
79	A Systematic Comparison of Tropical Waves over Northern Africa. Part I: Influence on Rainfall. Journal of Climate, 2019, 32, 1501-1523.	1.2	35
80	An extreme precipitation event in southern Morocco in spring 2002 and some hydrological implications. Weather, 2003, 58, 377-387.	0.6	34
81	Modeling haboob dust storms in largeâ€scale weather and climate models. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2090-2109.	1.2	34
82	An Objective Climatology of Tropical Plumes. Journal of Climate, 2013, 26, 5044-5060.	1.2	33
83	Identifying errors in dust models from data assimilation. Geophysical Research Letters, 2016, 43, 9270-9279.	1.5	33
84	Quantifying the Contribution of Different Cloud Types to the Radiation Budget in Southern West Africa. Journal of Climate, 2018, 31, 5273-5291.	1.2	33
85	Cloud Banding and Winds in Intense European Cyclones: Results from the DIAMET Project. Bulletin of the American Meteorological Society, 2015, 96, 249-265.	1.7	32
86	Revealing the meteorological drivers of the September 2015 severe dust event in the Eastern Mediterranean. Atmospheric Chemistry and Physics, 2017, 17, 13573-13604.	1.9	30
87	Dust mobilization and aerosol transport from West Africa to Cape Verde—a meteorological overview of SAMUM-2. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 430.	0.8	29
88	Disagreements in Low-Level Moisture between (Re)Analyses over Summertime West Africa. Monthly Weather Review, 2015, 143, 1193-1211.	0.5	29
89	Remote biomass burning dominates southern West African air pollution during the monsoon. Atmospheric Chemistry and Physics, 2019, 19, 15217-15234.	1.9	29
90	Soudanoâ€Saharan depressions and their importance for precipitation and dust: a new perspective on a classical synoptic concept. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 1431-1445.	1.0	28

#	Article	IF	CITATIONS
91	Meteorological Aspects of Dust Storms. , 2014, , 121-147.		28
92	Prediction of Dry-Season Precipitation in Tropical West Africa and Its Relation to Forcing from the Extratropics. Weather and Forecasting, 2009, 24, 1064-1084.	0.5	27
93	Resolving Sahelian thunderstorms improves mid-latitude weather forecasts. Nature Communications, 2019, 10, 3487.	5.8	27
94	Overview of aerosol optical properties over southern West Africa from DACCIWA aircraft measurements. Atmospheric Chemistry and Physics, 2020, 20, 4735-4756.	1.9	27
95	Assessing the role of anthropogenic and biogenic sources on PM ₁ over southern West Africa using aircraft measurements. Atmospheric Chemistry and Physics, 2018, 18, 757-772.	1.9	26
96	The role of dynamic and diabatic processes in the generation of cut-off lows over Northwest Africa. Meteorology and Atmospheric Physics, 2007, 96, 3-19.	0.9	25
97	Diurnal cycle of coastal anthropogenic pollutant transport over southern West Africa during the DACCIWA campaign. Atmospheric Chemistry and Physics, 2019, 19, 473-497.	1.9	24
98	The sensitivity of nocturnal lowâ€level jets and nearâ€surface winds over the Sahel to model resolution, initial conditions and boundaryâ€layer setâ€up. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1442-1456.	1.0	23
99	A process-based evaluation of dust-emitting winds in the CMIP5 simulation of HadGEM2-ES. Climate Dynamics, 2016, 46, 1107-1130.	1.7	23
100	A Simple Identification Scheme for Upper-Level Troughs and Its Application to Winter Precipitation Variability in Northwest Africa. Journal of Climate, 2004, 17, 1411-1418.	1.2	21
101	Evidence for flash floods over deserts from loss of coherence in InSAR imagery. Journal of Geophysical Research, 2012, 117, .	3.3	21
102	Aerosol distribution in the northern Gulf of Guinea: local anthropogenic sources, long-range transport, and the role of coastal shallow circulations. Atmospheric Chemistry and Physics, 2018, 18, 12363-12389.	1.9	21
103	Forecasting wind gusts in winter storms using a calibrated convectionâ€permitting ensemble. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 1864-1881.	1.0	21
104	Lagrangian dust model simulations for a case of moist convective dust emission and transport in the western Sahara region during Fennec/LADUNEX. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6117-6144.	1.2	20
105	New Saharan wind observations reveal substantial biases in analysed dustâ€generating winds. Atmospheric Science Letters, 2017, 18, 366-372.	0.8	20
106	Aerosol liquid water content in the moist southern West African monsoon layer and its radiative impact. Atmospheric Chemistry and Physics, 2018, 18, 14271-14295.	1.9	20
107	A Systematic Comparison of Tropical Waves over Northern Africa. Part II: Dynamics and Thermodynamics. Journal of Climate, 2019, 32, 2605-2625.	1.2	20
108	Unexpected Biomass Burning Aerosol Absorption Enhancement Explained by Black Carbon Mixing State. Geophysical Research Letters, 2020, 47, e2020GL089055.	1.5	20

#	Article	IF	CITATIONS
109	Moroccan Climate in the Present and Future: Combined View from Observational Data and Regional Climate Scenarios. Environmental Science, 2008, , 29-45.	0.1	19
110	Aerosol influences on low-level clouds in the West African monsoon. Atmospheric Chemistry and Physics, 2019, 19, 8503-8522.	1.9	19
111	Interactions between Convection and a Moist Vortex Associated with an Extreme Rainfall Event over Southern West Africa. Monthly Weather Review, 2019, 147, 2309-2328.	0.5	19
112	Skill of Global Raw and Postprocessed Ensemble Predictions of Rainfall in the Tropics. Weather and Forecasting, 2020, 35, 2367-2385.	0.5	17
113	Identification and global climatology of upper-level troughs at low latitudes. Meteorologische Zeitschrift, 2008, 17, 565-573.	0.5	16
114	Dynamics and Predictability of a Heavy Dry-Season Precipitation Event over West Africa—Sensitivity Experiments with a Global Model. Monthly Weather Review, 2009, 137, 189-206.	0.5	16
115	The importance of Harmattan surges for the emission of North African dust aerosol. Geophysical Research Letters, 2015, 42, 9495-9504.	1.5	16
116	An evaluation of operational and research weather forecasts for southern West Africa using observations from the DACCIWA field campaign in June–July 2016. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 1121-1148.	1.0	16
117	Threeâ€dimensional pathways of dust over the Sahara during summer 2011 as revealed by new Infrared Atmospheric Sounding Interferometer observations. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 2731-2755.	1.0	16
118	An Objective Detection Method for Convective Cold Pool Events and Its Application to Northern Africa. Monthly Weather Review, 2015, 143, 5055-5072.	0.5	15
119	The role of low-level clouds in the West African monsoon system. Atmospheric Chemistry and Physics, 2019, 19, 1623-1647.	1.9	15
120	Synoptic-scale controls of fog and low-cloud variability in the Namib Desert. Atmospheric Chemistry and Physics, 2020, 20, 3415-3438.	1.9	14
121	Equatorward breaking Rossby waves over the North Atlantic and Mediterranean region in the ECMWF operational Ensemble Prediction System. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 58-71.	1.0	12
122	Idealized largeâ€eddy simulations of nocturnal lowâ€level jets over subtropical desert regions and implications for dustâ€generating winds. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1740-1752.	1.0	12
123	Disentangling different moisture transport pathways over the eastern subtropical North Atlantic using multi-platform isotope observations and high-resolution numerical modelling. Atmospheric Chemistry and Physics, 2021, 21, 16319-16347.	1.9	12
124	The intricacies of identifying equatorial waves. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 2814-2852.	1.0	12
125	Heavy Precipitation at the Alpine South Side and Saharan Dust over Central Europe: A Predictability Study Using TIGGE. Weather and Forecasting, 2011, 26, 957-974.	0.5	11
126	The <i>Braer</i> storm revisited. Weather, 2013, 68, 105-111.	0.6	11

#	Article	IF	CITATIONS
127	Drivers for the deepening of severe European windstorms and their impacts on forecast quality. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 309-320.	1.0	11
128	Dynamics of stingâ€jet storm <i>Egon</i> over continental Europe: Impact of surface properties and model resolution. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 186-210.	1.0	11
129	Orographic Effects and Evaporative Cooling along a Subtropical Cold Front: The Case of the Spectacular Saharan Dust Outbreak of March 2004. Monthly Weather Review, 2012, 140, 2520-2533.	0.5	10
130	Flying through extratropical cyclone Friedhelm. Weather, 2013, 68, 9-13.	0.6	10
131	The influence of DACCIWA radiosonde data on the quality of ECMWF analyses and forecasts over southern West Africa. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 1719-1739.	1.0	10
132	A Lagrangian Perspective on Stable Water Isotopes During the West African Monsoon. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034895.	1.2	10
133	The global and multi-annual MUSICA IASI {H ₂ O, <i>l´</i> D} pair dataset. Earth System Science Data, 2021, 13, 5273-5292.	3.7	10
134	Can we trust climate models to realistically represent severe European windstorms?. Climate Dynamics, 2016, 46, 3431-3451.	1.7	9
135	Revisiting the synoptic-scale predictability of severe European winter storms using ECMWF ensemble reforecasts. Natural Hazards and Earth System Sciences, 2017, 17, 1795-1810.	1.5	9
136	Statistical Forecasts for the Occurrence of Precipitation Outperform Global Models over Northern Tropical Africa. Geophysical Research Letters, 2021, 48, e2020GL091022.	1.5	9
137	Research flight observations of a prefrontal gravity wave near the southwestern UK. Weather, 2010, 65, 293-297.	0.6	8
138	Climatology of coastal wind regimes in Benin. Meteorologische Zeitschrift, 2019, 28, 23-39.	0.5	8
139	Structure, Process, and Mechanism. , 2020, , 15-43.		8
140	The predictability of precipitation episodes during the West African dry season. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1047-1058.	1.0	7
141	Tropical Transition of Hurricane Chris (2012) over the North Atlantic Ocean: A Multiscale Investigation of Predictability. Monthly Weather Review, 2019, 147, 951-970.	0.5	7
142	Formation of Wind Gusts in an Extratropical Cyclone in Light of Doppler Lidar Observations and Large-Eddy Simulations. Monthly Weather Review, 2020, 148, 353-375.	0.5	7
143	The role of observed cloudâ€radiative anomalies for the dynamics of the North Atlantic Oscillation on synoptic timeâ€scales. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 1822-1841.	1.0	7
144	The potential of increasing man-made air pollution to reduce rainfall over southern West Africa. Atmospheric Chemistry and Physics, 2021, 21, 35-55.	1.9	7

#	Article	IF	CITATIONS
145	Weakening and moistening of the summertime Saharan heat low through convective cold pools from the Atlas Mountains. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3907-3928.	1.2	6
146	On What Scale Can We Predict the Agronomic Onset of the West African Monsoon?. Monthly Weather Review, 2016, 144, 1571-1589.	0.5	6
147	The Ewiem Nimdie Summer School Series in Ghana: Capacity Building in Meteorological Education and Research—Lessons Learned and Future Prospects. Bulletin of the American Meteorological Society, 2012, 93, 595-601.	1.7	5
148	Convective Squalls over the Eastern Equatorial Atlantic. Weather and Forecasting, 2012, 27, 770-783.	0.5	5
149	Waves to Weather: Exploring the Limits of Predictability of Weather. Bulletin of the American Meteorological Society, 2021, 102, E2151-E2164.	1.7	5
150	The impact of GPS and high-resolution radiosonde nudging on the simulation of heavy precipitation during HyMeX IOP6. Weather and Climate Dynamics, 2021, 2, 561-580.	1.2	5
151	Overview and first results of the Wind and Storms ExperimentÂ(WASTEX): a field campaign to observe the formation of gusts using a Doppler lidar. Advances in Science and Research, 0, 15, 91-97.	1.0	5
152	Birth of the Biscane. Weather, 2017, 72, 236-241.	0.6	3
153	Downward cloud venting of the central African biomass burning plume during the West Africa summer monsoon. Atmospheric Chemistry and Physics, 2020, 20, 5373-5390.	1.9	3
154	Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus, Series B: Chemical and Physical Meteorology, 2009, 61, .	0.8	3
155	Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus, Series B: Chemical and Physical Meteorology, 2009, 61, .	0.8	3
156	Sensitivity of low-level clouds and precipitation to anthropogenic aerosol emission in southern West Africa: a DACCIWA case study. Atmospheric Chemistry and Physics, 2022, 22, 3251-3273.	1.9	3
157	The devil in the detail of storms. Environmental Research Letters, 2018, 13, 051001.	2.2	2
158	EARLINET observations of the 14–22-May long-range dust transport event during SAMUM 2006: validation of results from dust transport modelling. Tellus, Series B: Chemical and Physical Meteorology, 2009, 61, .	0.8	2
159	Dust mobilization and transport in the northern Sahara during SAMUM 2006 – a meteorological overview. Tellus, Series B: Chemical and Physical Meteorology, 2009, 61, .	0.8	1
160	Vertical profiling of convective dust plumes in southern Morocco during SAMUM. Tellus, Series B: Chemical and Physical Meteorology, 2009, 61, .	0.8	1
161	Dust Devil Sediment Transport: From Lab to Field to Global Impact. Space Sciences Series of ISSI, 2017, , 377-426.	0.0	1
162	The Ewiem Nimdie Summer School Series in Ghana: Capacity Building in Meteorological Education and Research, Lessons Learned, and Future Prospects. Bulletin of the American Meteorological Society, 2012, 93, ES47-ES47.	1.7	0

#	Article	IF	CITATIONS
163	Dust may cool polar regions. Nature Climate Change, 2013, 3, 443-444.	8.1	0