Amit Bhattacharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2325648/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innate connection between salts on preparation and separation performance of Thin-film Poly (piperazinamide) composite membrane. Materials and Manufacturing Processes, 2022, 37, 1756-1765.	4.7	2
2	Fluoride contamination in water: Remediation strategies through membranes. Groundwater for Sustainable Development, 2022, 17, 100751.	4.6	9
3	Polypyrrole as the interlayer for thinâ€film poly(piperazineâ€amide) composite membranes: Separation behavior of salts and pesticides. Journal of Applied Polymer Science, 2021, 138, 50356.	2.6	9
4	Impacts of recycled polysulfone on the salt separation performance of thin film poly(piperazine-amide) membranes. Journal of Environmental Chemical Engineering, 2021, 9, 105869.	6.7	7
5	Removal of multiple pesticide residues from water by low-pressure thin-film composite membrane. Applied Water Science, 2020, 10, 1.	5.6	14
6	Poly(piperizinamide) with copper ion composite membranes: Application for mitigation of Hexaconazole from water and combat microbial contamination. Journal of Hazardous Materials, 2019, 376, 102-111.	12.4	14
7	Development of Hg2+ colorimetric sensor using polymeric membrane. Separation Science and Technology, 2019, 54, 386-395.	2.5	2
8	Simple, one-step dye-based kit for bacterial contamination detection in a range of water sources. Sensors and Actuators B: Chemical, 2018, 276, 121-127.	7.8	8
9	Tuning separation behavior of tailor-made thin film poly(piperazine-amide) composite membranes for pesticides and salts from water. Desalination, 2017, 404, 280-290.	8.2	26
10	Enhanced bacterial affinity of PVDF membrane: its application as improved sea water sampling tool for environmental monitoring. Environmental Science and Pollution Research, 2017, 24, 5831-5840.	5.3	6
11	Tailor Made Thin Film Composite Membranes: Potentiality Towards Removal of Hydroquinone from Water. Journal of Polymers and the Environment, 2017, 25, 1140-1146.	5.0	9
12	Drinking water contamination and treatment techniques. Applied Water Science, 2017, 7, 1043-1067.	5.6	598
13	Pretreatment of agriculture field water for improving membrane flux during pesticide removal. Applied Water Science, 2017, 7, 3281-3290.	5.6	7
14	Sulfonated polysulfone-preparative routes and applications in membranes used for pressure driven techniques. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 644-650.	2.2	5
15	Studies towards understanding the effect of hexane on polysulfone membranes. Polymer Bulletin, 2015, 72, 2157-2169.	3.3	12
16	Separation of atrazine from water through thin-film composite membranes: influence of salts and surfactants. Desalination and Water Treatment, 2015, 55, 575-586.	1.0	6
17	On the differences of separation of hazardous catechol and resorcinol through tailor-made thin film composite (TFC) membranes. Journal of Environmental Chemical Engineering, 2015, 3, 1758-1768.	6.7	3
18	Removal of substituted phenyl urea pesticides by reverse osmosis membranes: Laboratory scale study for field water application. Desalination, 2015, 358, 69-75.	8.2	46

AMIT BHATTACHARYA

#	Article	IF	CITATIONS
19	Anomalous behaviour of magnetic coercivity in graphene oxide and reduced graphene oxide. Journal of Applied Physics, 2014, 115, .	2.5	29
20	Biosurfactant in Membrane Separation of Atrazine from Water. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	3
21	Identifying bacterial fragments on morphologically similar substrate using UAFM. Micron, 2014, 60, 1-4.	2.2	1
22	Probing the selective salt rejection behavior of thin film composite membranes: A DFT study. Journal of Membrane Science, 2013, 436, 90-96.	8.2	20
23	Tune to immobilize lipases on polymer membranes: Techniques, factors and prospects. Biocatalysis and Agricultural Biotechnology, 2013, 2, 171-190.	3.1	57
24	Studies on the Effects of Salt and Surfactant in Wet Phase Separation of Polysulfone. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 918-925.	2.2	5
25	Comparative study of the hydrolysis of different oils by lipaseâ€immobilized membranes. Journal of Applied Polymer Science, 2012, 124, E17.	2.6	18
26	Approaches to prepare tfc polyamide membranes by coating diamine during, and/or post formation of asymmetric membranes and their performances. Brazilian Journal of Chemical Engineering, 2011, 28, 457-465.	1.3	10
27	Techniques for characterization of polyamide thin film composite membranes. Desalination, 2011, 282, 78-86.	8.2	53
28	Thin film composite reverse osmosis membrane development and scale up at CSMCRI, Bhavnagar. Desalination, 2011, 282, 68-77.	8.2	31
29	Remediation of simazine from water through low-pressure thin film composite membrane using surfactants. International Journal of Environmental Engineering, 2010, 2, 4.	0.1	3
30	Lipase immobilized on poly (vinyl alcohol) modified polysulfone membrane: application in hydrolytic activities for olive oil. Polymer Bulletin, 2010, 64, 141-158.	3.3	21
31	Polysulfoneâ€azo composite membrane: New preparative approach, importance in bactericidal and biofilm inhibition activities. Journal of Applied Polymer Science, 2010, 115, 3710-3715.	2.6	8
32	Lipase immobilization on Polysulfone globules and their performances in olive oil hydrolysis. International Journal of Biological Macromolecules, 2010, 46, 445-450.	7.5	15
33	Studies of performances by the interchanging of the sequence of the photomodified layer in the thin film composite (TFC) membrane. Journal of Applied Polymer Science, 2008, 108, 2611-2616.	2.6	3
34	Pentachlorophenol removal from water using surfactant-enhanced filtration through low-pressure thin film composite membranes. Journal of Hazardous Materials, 2008, 154, 426-431.	12.4	14
35	Preparation, characterization and performance of conducting polypyrrole composites based on polysulfone. Desalination, 2008, 225, 366-372.	8.2	30
36	Comparative study of performances of lipase immobilized asymmetric polysulfone and polyether sulfone membranes in olive oil hydrolysis. International Journal of Biological Macromolecules, 2008, 42, 145-151.	7.5	41

AMIT BHATTACHARYA

#	Article	IF	CITATIONS
37	Studies on the separation performances of chlorophenol compounds from water by thin film composite membranes. Macromolecular Research, 2008, 16, 590-595.	2.4	8
38	Studies on Permeation of Bovine Serum Albumin (BSA) Through Photo-Modified Functionalized Asymmetric Membrane. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 46, 90-96.	2.2	11
39	Development of light-induced functionalized asymmetric polysulfone membranes. Journal of Applied Polymer Science, 2007, 105, 609-614.	2.6	15
40	Remediation of Pesticideâ€Polluted Waters Through Membranes. Separation and Purification Reviews, 2006, 35, 1-38.	5.5	32
41	Studies On The Crosslinking Of Poly (Vinyl Alcohol). Journal of Polymer Research, 2006, 13, 161-169.	2.4	280
42	Pesticides removal performance by low-pressure reverse osmosis membranes. Journal of Applied Polymer Science, 2006, 102, 3575-3579.	2.6	22
43	Studies on surface tension of poly(vinyl alcohol): Effect of concentration, temperature, and addition of chaotropic agents. Journal of Applied Polymer Science, 2004, 93, 122-130.	2.6	88
44	Grafting: a versatile means to modify polymersTechniques, factors and applications. Progress in Polymer Science, 2004, 29, 767-814.	24.7	999
45	NANOFILTRATION AND REVERSE OSMOSIS MEMBRANES: THEORY AND APPLICATION IN SEPARATION OF ELECTROLYTES. Reviews in Chemical Engineering, 2004, 20, .	4.4	58
46	Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer. Journal of Membrane Science, 2003, 214, 211-221.	8.2	201
47	Radiation and industrial polymers. Progress in Polymer Science, 2000, 25, 371-401.	24.7	294
48	Conducting Polymers in Solution—Progress Toward Processibility. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 1999, 39, 17-56.	2.2	48
49	Carbonate radical induced polymerisation of pyrrole: A steady state and flash photolysis study. Journal of Radioanalytical and Nuclear Chemistry, 1998, 230, 91-95.	1.5	5
50	Effect of temperature on the synthesis of FeCl3-doped polypyrroles studied by positron annihilation technique. Materials Research Bulletin, 1997, 32, 1063-1072.	5.2	11
51	Conducting composites of polypyrrole and polyaniline a review. Progress in Solid State Chemistry, 1996, 24, 141-181.	7.2	131
52	A new conducting nanocomposite—PPy-zirconium (IV) oxide. Materials Research Bulletin, 1996, 31, 527-530.	5.2	67
53	Preparation of polypyrrole composite with acrylic acid-grafted tetrafluorothylene-hexafluoropropylene (Teflon-FEP) copolymer. Synthetic Metals, 1994, 65, 35-38.	3.9	17
54	Transport properties of FeCl3-doped polypyrroles at different dopant concentrations. Journal of Physics Condensed Matter, 1994, 6, 10499-10507.	1.8	12

#	Article	IF	CITATIONS
55	Chitosan/polyacrylonitrile composite nanofiltration membranes: towards separation of salts, riboflavin and antibacterial study. Polymer Bulletin, 0, , 1.	3.3	3
56	Development spectrum of poly(piperazine-amide) membranes by adding different matrices. Emergent Materials, 0, , 1.	5.7	2
57	Composite Membranes Prepared by Polyvinyl Alcohol-Maleic Acid onto Polysulfone: Separation Performance of Tea Polyphenol. Macromolecular Research, 0, , .	2.4	0